175 research outputs found

    Reconstruction of the pose of uncalibrated cameras via user-generated videos

    Get PDF
    Extraction of 3D geometry from hand-held unsteady uncalibrated cameras faces multiple difficulties: finding usable frames, feature-matching and unknown variable focal length to name three. We have built a prototype system to allow a user to spatially navigate playback viewpoints of an event of interest, using geometry automatically recovered from casually captured videos. The system, whose workings we present in this paper, necessarily estimates not only scene geometry, but also relative viewpoint position, overcoming the mentioned difficulties in the process. The only inputs required are video sequences from various viewpoints of a common scene, as are readily available online from sporting and music events. Our methods make no assumption of the synchronization of the input and do not require file metadata, instead exploiting the video to self-calibrate. The footage need only contain some camera rotation with little translation—for hand-held event footage a likely occurrence.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1145/2659021.265902

    Excess resistivity in graphene superlattices caused by umklapp electron-electron scattering

    Full text link
    Umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals. However, umklapp scattering has proven to be elusive in experiment as it is easily obscured by other dissipation mechanisms. Here we show that electron-electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperatures and carrier densities. The umklapp processes cause giant excess resistivity that rapidly increases with increasing the superlattice period and are responsible for deterioration of the room-temperature mobility by more than an order of magnitude as compared to standard, non-superlattice graphene devices. The umklapp scattering exhibits a quadratic temperature dependence accompanied by a pronounced electron-hole asymmetry with the effect being much stronger for holes rather than electrons. Aside from fundamental interest, our results have direct implications for design of possible electronic devices based on heterostructures featuring superlattices

    Micromagnetometry of two-dimensional ferromagnets

    Full text link
    The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferromagnetism in such materials cannot probe the magnetic field directly. Here, we show that ballistic Hall micromagnetometry can be used to measure the magnetization of individual two-dimensional ferromagnets. Our devices are made by van der Waals assembly in such a way that the investigated ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from encapsulated graphene. We use the micromagnetometry technique to study atomically thin chromium tribromide (CrBr3). We find that the material remains ferromagnetic down to monolayer thickness and exhibits strong out-of-plane anisotropy. We also find that the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of two-dimensional ferromagnetism.Comment: 19 pages, 12 figure

    Visualizing Poiseuille flow of hydrodynamic electrons

    Full text link
    Hydrodynamics is a general description for the flow of a fluid, and is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. While various aspects of electron hydrodynamics were revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons, the Poiseuille flow profile, has remained elusive. In this work, we provide the first real-space imaging of Poiseuille flow of an electronic fluid, as well as visualization of its evolution from ballistic flow. Utilizing a scanning nanotube single electron transistor, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperature into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a 'phase diagram' that characterizes the electron flow regimes. Our results provide long-sought, direct confirmation of Poiseuille flow in the solid state, and enable a new approach for exploring the rich physics of interacting electrons in real space

    Researching the use of force: The background to the international project

    Get PDF
    This article provides the background to an international project on use of force by the police that was carried out in eight countries. Force is often considered to be the defining characteristic of policing and much research has been conducted on the determinants, prevalence and control of the use of force, particularly in the United States. However, little work has looked at police officers’ own views on the use of force, in particular the way in which they justify it. Using a hypothetical encounter developed for this project, researchers in each country conducted focus groups with police officers in which they were encouraged to talk about the use of force. The results show interesting similarities and differences across countries and demonstrate the value of using this kind of research focus and methodology

    Edge currents shunt the insulating bulk in gapped graphene

    Get PDF
    An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra

    International self-report delinquency (ISRD4) study protocol: background, methodology, and mandatory items for the 2021/2022 survey

    Get PDF
    This document describes the background and methodology of the fourth round of the International Self-Report Delinquency study (ISRD4). Drawing from the fields of criminology, public health and cross-national methodology, the ISRD is an ongoing multi-national research study that aims to describe and explain adolescents’ experiences with crime and victimization, to test criminological theories, and to develop recommendations for prevention and interventions. The project relies on a common research protocol, which standardizes questionnaire content and administration, and prescribes comparable sampling procedures in participating countries enabling the collection of common data across all of them. The ISRD4 Study Protocol describes the standard sections of the ISRD4 questionnaire (core and sweep-specific), for both the school-based as well as the internet-based samples. In addition to the core ISRD items, the ISRD4 questionnaire includes new items related to cyber-offending and –victimization, discrimination, and perceptions of violence and revenge motives. The protocol also describes the rationale for including an internet-based survey as a complement to the school-based survey. The document aims to provide a detailed set of guidelines for participating national teams but will also be of interest to researchers interested in youth victimization and offending, theory-testing, and cross-national methodology. Fieldwork in approximately 40 countries began in 2020 and will conclude by the end of 2022
    • 

    corecore