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ABSTRACT
Extraction of 3D geometry from hand-held unsteady uncalibrated
cameras faces multiple difficulties: finding usable frames, feature-
matching and unknown variable focal length to name three. We
have built a prototype system to allow a user to spatially navigate
playback viewpoints of an event of interest, using geometry automat-
ically recovered from casually captured videos. The system, whose
workings we present in this paper, necessarily estimates not only
scene geometry, but also relative viewpoint position, overcoming
the mentioned difficulties in the process. The only inputs required
are video sequences from various viewpoints of a common scene,
as are readily available online from sporting and music events. Our
methods make no assumption of the synchronization of the input
and do not require file metadata, instead exploiting the video to self-
calibrate. The footage need only contain some camera rotation with
little translation — for hand-held event footage a likely occurrence.

Categories and Subject Descriptors
I.4.1 [Digitization and Image Capture]: Camera calibration; I.4.8
[Scene Analysis]: Stereo; I.4.9 [Image Processing and Computer
Vision]: Applications

Keywords
Camera pose estimation, 3D reconstruction, user-generated videos,
self-calibration

1. INTRODUCTION
User-generated video is a huge and growing form of online media:

over 100 hours of footage are uploaded to YouTube every minute.
With such vast amounts of video, the challenge becomes one of
presenting useful ways for the content consumer to navigate it all.
A common form of online video is that of outdoor events, sporting
or musical, where many hundreds of audience members each make
their own recordings on their smartphones. A search will reveal
many videos for the event, but selecting between these results may
require several attempts to meet an individual’s tastes. Presenting a
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Figure 1: Relative localization of camera positions from crowd-
sourced video clips in a 3D playback interface

spatial interpretation of the positions from which the videos were
recorded (as in Figure 1) helps users make a more informed choice.

From this application, comes the subject of this paper: a system
capable of estimating approximate (to within a few metres) relative
3D camera locations, when given unsynchronized video sequences
covering a common scene. Furthermore, the videos will be of
variable quality, with issues of random occlusions, poor lighting,
low cost image sensors, and unsteady camera motion all stemming
from the use of inexpensive consumer devices by non-professional
camera operators: the system necessarily copes with such conditions
as a matter of course, in some cases exploiting these characteristics.

We presume no details of the optical system, nor indeed any
knowledge of the camera model itself — video metadata are not
nearly so complete as that from digital still camera files: no camera
model, image sensor dimensions, or focal length information. We
must therefore infer everything from the image stream itself, while
also dealing with motion-blur and extracting useful and correct
feature correspondences. The target application for this system is
in reconstruction of camera positions at events where there is likely
to be much available footage recorded on consumer-grade devices:
sports matches and music concerts being key examples, but its use
is not necessarily restricted to these two cases.

This paper proceeds as follows: after a discussion of work ad-
dressing somewhat similar problems, Section 2 details and discusses
the design of the system, illustrated with results from a typical real-
world dataset, which inform and validate our design. Section 3
gives accuracy results of the system on data with known ground-
truth. Section 4 briefly presents further results on an alternative
real data scenario, while Section 5 discusses and concludes with
the advances made by the proposed system, and highlights possible
future directions.
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1.1 Related work
The problem posed bears many similarities to Structure from

Motion (SfM), where a scene, or object, is observed over time by
a moving camera which records differing 2D projections of the
scene as it travels. From such data, approaches exist to variously
recover the 3D information of the scene, the track of the camera’s
path, and the pose of the camera at each instant. The n frames
captured by the moving camera may instead be seen as n static
cameras each capturing one frame, which is not dissimilar to the
user-generated video problem posed above. The main difference
lies in the n cameras in the event scenario all being different, each
with unknown parameters describing their optical system, which
in turn greatly affects how the projection of the 3D real world is
captured in 2D by the camera.

Much previous work has considered the processing of photo-
graphs. [23] describes a complete system for combining Internet-
sourced photographs of tourist attractions, to form full 3D models,
with the follow-up paper ‘Building Rome in a day’ [1] extending
the approach to city scale. While these use a data-source with sig-
nificantly different characteristics, the underlying approach is SfM,
and several of the methods used — SIFT feature matching ([15])
and RANSAC parameter estimation — apply to the video-based
problem. One of the differences is availability of camera optical
parameters; Snavely et al. start construction of their camera network
by only considering images for which a focal length estimate is
available, which typically comes from EXIF data.

The issues of image quality and calibration affect the applicabil-
ity of many photograph-based systems. Work exists in abundance
for applications spanning urban reconstruction and outdoor navig-
ation where calibrated cameras are presumed. The ‘Videoscapes’
paper [24] is an example of an uncalibrated video-based city ex-
ploration system, where moving cameras allow the user to move
between common points in purpose-captured videos, and to swap
video at such a ‘portal’ via an aesthetically pleasing transition. A
graph of the ways videos are connected between portals is provided,
but true spatial positioning is only available with supplementary
GPS and orientation data; geolocation from video is left as future
work. Another example of a system augmented by GPS (and inertial
navigation) is [18].

[3] also deals with rendering viewpoint transitions, noting that
their geometry recovery may have questionable 3D accuracy; they
merely require the rendered scene to look correct. Other systems also
focus on the scene reconstruction, rather than on camera positions,
the depth estimate of which is particularly challenging. Ballan
et al. further use audio to synchronize the videos, which vastly
simplifies feature matching; unfortunately in sports event scenarios
the recorded audio is highly localized however.

Other works dealing with unsynchronized videos need large sil-
houettes of performers (e.g. [21]), or the availability of dense point
correspondences (e.g. [13], [14] and [7]) — unlikely given the
expectation of poor quality videos taken from quite different view-
points somewhat distant from the performance. Donate and Liu,
along with [11] and many other simultaneous localization and map-
ping (SLAM) publications, also exploit the presumption of a roving
camera, whereas event footage is often taken from essentially static
viewpoints. Several of these systems calibrate using [19], which
in turn is based on [17]. This paper describes a linear method of
calibrating, specifically with a view to recovering focal length when
other parameters are known — relevant conditions for our case.
They find that simplified calibration algorithms not trying to exactly
recover all parameters can counter-intuitively lead to better results.

Other notable self-calibration literature includes [9], which de-
scribes a practical algorithm supposing at least three images from

fixed zoom cameras are available, and [6], which allows different op-
tical parameters to be fixed or vary (with varying numbers of images
required), permitting variable zoom. In both cases it is presumed
the camera is stationary: fixed in space, but free in orientation, an
appropriate scenario for event footage. [5] is an interesting paper,
noting that previous approaches over-parameterize the problem and
discounting non-focal length optical parameters as being essentially
irrelevant to real data. They use algebraic geometry techniques to
estimate focal lengths from two images at different zoom-levels
separated by a pure rotation, using only three point correspond-
ences, and claim greater noise tolerance and accuracy than common
bundle-adjustment methods.

Exploratory experiments in the early stages of our research used
the ‘Bundler’ software (from the ‘Building Rome in a day’ re-
search) [22] with event stills, but distorted or highly implausible
reconstructions were produced. Similarly flawed reconstructions
resulted from the state-of-the-art VisualSfM software [25]. These
failures are probably in no small part due to failing to correctly
estimate focal lengths from images without EXIF data. No canon-
ical example exists of a system to deal with crowd/event videos
(little camera motion relative to scene) and infer camera location.
Processing burden has to be some explanation for this, and this
consideration is reflected in our preference for straightforward and
parallelizable techniques.

2. SYSTEM DESCRIPTION
In this section we present the multiple stages of processing that

must be performed on the input video sequences.

2.1 Overview
In order, the stages of the system are as follows:

Frame selection Reducing the quantity of data to process by find-
ing suitable frames with many interest points from each video.

Feature matching Extracting and matching feature points, with a
high degree of confidence, between frames both from differing
viewpoints (for 3D reconstruction) and from the same video
sequence (for camera calibration).

Camera parameter estimation Inferring parameters for each cam-
era’s optical system, particularly focal length and pixel aspect
ratio (intrinsic calibration).

3D reconstruction Taking the intrinsic calibration parameters, and
matched feature sets, and calculating camera pose (extrinsic
calibration) and 3D scene co-ordinates.

With fully calibrated cameras we have achieved the desired output
of the system, namely approximate relative camera positions, but it
should be noted that being now in the possession of a full camera
geometry, additional outputs, for example 3D structure modelling
and viewpoint warping, can potentially also be realized.

2.2 Frame selection
A 5 minute video clip, at 30 frames per second, has 9000 frames.

With a 1920 ˆ 1280 pixel resolution, exhaustive processing would
have to consider 22,000 million pixels. For reasons of computational
tractability, it is vital to first cull the video sequence into some more
manageable collection of frames, at low computational expense.

User-generated event footage tends to be unstable, with camera-
shake and low-cost hardware leading to many blurry frames. Such
frames are much less useful for accurate extraction of feature points,
and so are good candidates for culling, presuming some fast method



(a) Camera motion causing blur (b) Occlusion

(c) Lighting/sensor issues (d) Extraneous cutaway shot

Figure 2: Examples of discardable frames from typical footage
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Figure 3: Measure of blurriness for 1001 frames of a baseball clip.
Minima (red triangles) found using 2s sliding window

of detecting them. Figure 2 gives some examples of these issues
observed in a test video. Any simple sampling-in-time approach
must be ruled out: in the presence of camera-shake, missing ‘good’
frames is very likely. While it may appear that poor quality frames
carry less information, and hence a measure of entropy might be
indicative, experiments showed this not to be a discriminative metric.

Instead we use a ‘relative blurriness’ measure, bt , comparing
blurriness between frames from one video sequence, taken from the
video stabilization literature ([16]):

bt “ 1
ř

pt

!

`p fx ˙ Itqpptq
˘2` `p fy ˙ Itqpptq

˘2
) , (1)

where fx and fy are two derivative filters along the x and y directions
respectively, and the pixel co-ordinates of the image at frame index
t (It ) are given by pt . As noted in [16], this inverse of the sum of
squared gradients is robust to image alignment error and, with two
simple gradient convolutions in x and y per frame, it parallelizes
trivially.

bt gives a comparative measure from one frame to the next, and
we select minima (i.e. frames with comparatively low blurriness)
in this measure across all t, using a sliding window approach. A
two second window ensures that brief changes in video subject are
not lost, but guards against excessive repetition of barely changing
scenes. The locations of these minima for one video are shown
by red triangles in Figure 3. It is apparent from the figure that the
measure is highly discriminative, with the blurriness score varying
significantly from frame to frame.

The reconstruction stage needs around 10 matched points, but this

lower bound relies heavily on those points being both true matches
and very accurately localized. In an automated process it is very
likely that some matches will be erroneous, so in fact it is desirable to
have many matches (over 100), of which the vast majority (80-90%)
are good, so that by randomly sampling the matches a consensus of
in-/out-liers can be reached, via methods such as RANSAC. While
the comparative blurriness filtering produces sharp, textured frames,
there is no guarantee that the frames will have many interest points,
prerequisites for forming matches, when processed by a general-
purpose automated feature detector.

A second filtering is therefore performed, by applying a general-
purpose feature detector to each of the selected frames, and simply
taking the frames with most features. Our implementation uses
the very efficient FAST-9 detector ([20]), being the most reliable
of the FAST-n detectors. For short single-viewpoint video clips,
as are typical online, disregarding all but the highest scoring ten
frames gives satisfactory results. For longer sequences, selecting
more frames, separated in time, is required.

The frames considered optimal by the above processes are sharp,
strongly textured, and featureful. In empirical evaluation the selected
frames are always ‘good’ by human standards; those that one would
manually select as appearing sharp and featureful.

In footage of sports events the frames selected are generally
not of the playing surface — wide or crowd shots are much more
common. Likewise in concert video, selected frames are rarely of
zoomed foreground shots — background set or stage shots are more
likely. Such frames are essentially never recorded simultaneously in
multiple views; hence matching of frames between videos must be
performed without regard to video synchronization. However, since
video, especially sports footage, is challenging to automatically
synchronize, the forcing of an unsynchronized approach by the
frame selection method is in fact advantageous. The caveat is that
should the input videos not contain some essentially static scene
elements the subsequent matching and reconstruction stages are
unlikely to succeed: this is accepted as a case beyond the scope of
our system; for the intended footage most videos do not suffer from
this issue.

2.3 Feature matching
Robust feature matching is necessary to have reliable point corres-

pondences for 3D reconstruction and for camera calibration. Given
the range of potential input videos, specialized feature detectors
and matchers are problematic: they are likely to be superior for
their specific task (say, detecting a tennis court), but apart from then
needing an immense array of purpose-made algorithms, choosing
the correct one to use becomes an additional undertaking. Both due
to this, and consideration of the (in)ability to deal with videos of
situations for which no tuned algorithm exists, we only consider
general-purpose feature detectors.

While not the fastest feature detecting and describing technique,
the SIFT algorithm ([15]) has been found in several studies to
provide one of the best performing descriptors. We therefore process
all of the highest scoring frames with Lowe’s SIFT algorithm to ob-
tain a set of keypoint descriptors and respective location information
for each frame.

The first stage of matching is a standard technique described in
Section 7.1 of the SIFT paper. Each SIFT descriptor has a point in a
128 dimensional space associated with it. A putative match with a
feature from frame a is made by finding the nearest descriptor from
frame b’s set of features. Lowe makes the observation that if the
second-nearest match has a similar distance to that of the first, i.e.
the ratio of distances is close to 1, we should have little reason to
trust the match: the strong second-best might be true, or even both
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Figure 4: Matches after ratio-of-distances filtering. Matches with
weaker ratio have lower saturation (more white than blue).
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Figure 5: Matches after scale and orientation filtering. Matches with
weaker ratio have lower saturation (more white than blue), incorrect
matches in red.
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Figure 6: Matches after displacement filtering. Matches with weaker
ratio have lower saturation (more white than blue), incorrect matches
in red.

may be false, the true match having been missed altogether.
Experimentally, reliable matches tend to occur frequently when

accepting a distance ratio less than 0.6. As the ratio gets closer to
1, using say 0.8, more valid matches are found, but the proportion
of false matches increases simultaneously. This situation is seen in
Figure 4, where matches at 0.6 or below are dark blue, and mostly
good, while weaker matches, those at 0.8 being white, are more
likely to be erroneous. We would like to retain the extra matches
found by using a 0.8 acceptance threshold, but to reliably filter out
many of the accompanying false matches.

Using a naïve RANSAC-like technique alone in the presence of
many false matches is computationally onerous. The second stage
of matching then exploits the expectation that the scene contains
static features (since the videos are unsynchronized we cannot rely
on the scene contents moving/deforming in the same way over time).
Fortunately many event scenes contain featureful fixed background
structures: buildings, stages, grandstands, advertisements, even
trees, for example. Events footage commonly has an audience
all contained by these background structures in an arena, with the
purposefully recorded action in the foreground. Thus there is a
significant depth from the camera to the background, and the views
of a given background will not change greatly from cameras a

little distance apart. SIFT annotates each keypoint with scale and
orientation measures. We observe that while there is no need for
these to be the same between two images, bearing in mind the depth
and similarity-of-view considerations, they ought to be related for
good frame matches on background features:

‚ Scale ought to be related by a (roughly) constant factor

‚ Orientation ought to be related by a (roughly) constant differ-
ence.

The key idea here is to form histograms of scaling factors/ori-
entation differences over all matches and only take those matches
falling in the histogram bin with the greatest count, essentially find-
ing the modal scale factor/orientation difference. This approach will
work well and quickly even in the presence of many false positives
(unlike RANSAC), assuming that erroneous scales/orientations are
uniformly distributed. For the scaling measure the technique is
identical to that proposed in [2], in the context of matching gravity-
aligned orthophotos of buildings, but no similar orientation method
is proposed. The technique is also closely related to that of Weak
Geometric Consistency by Jegou et al. [10], successfully used for
efficient image retrieval from large databases. In Figure 5 the scale
and orientation consensus filtering cleans the matches up markedly.
Only 25 (13%) incorrect matches remain, while weaker yet correct
matches have been retained.

There are two important implementational details: the first is that
in view of the ‘(roughly)’ above, the bin widths of the histogram
are important. We use fairly tight widths: the scale window is
˘10% and the orientation difference window is ˘7°. Linearization
of scale differences into equal width bins is easily achieved by
considering scale in the logarithmic domain. Once the best bin is
known, the acceptance widths are a little larger: ˘25%/˘15° of the
respective bin centres ensures that even features suffering significant
perspective distortion are not unnecessarily pruned.

The second detail relates to the bin edges: in order to not bias the
binning by using some particular bin-edge alignment, one should
attempt the histogramming with all possible offsets. In practice we
approximate this by iteratively forming the histogram, sliding the
bin-edges along using a small discrete step-size.

It is worth noting that this histogram strategy lends itself to a
similar ratio-of-improvement threshold (as used by the descriptor
distance matching), where further processing of a frame is de-
clined if there is no clear modal bin, implying no obvious overall
scale/orientation, and hence no matches can be accepted.

The third stage makes use of the feature position data; the co-
ordinates of each localized keypoint. We further assume that back-
ground objects present some continuous face toward the cameras.
This being the case, all the per-object feature-point displacements
from the frames of one view to another ought again to be similar.
We transform the matched keypoint displacement vectors into polar
co-ordinates, expressing each vector as a length and angle. These
quantities are respectively amenable to modal scale and orientation
filtering as described previously.

Finding one mode across the whole frame assumes that the ob-
served displacements are all at roughly the same depth from the
camera. A straightforward solution to this unjustified limitation is
to tile the frame, into say 4 ˆ4 rectangles, and accept the modal
displacement for each tile, subject to a tile having enough putative
matches to permit a modal displacement to be meaningful. This
gives differing modal motion vectors per tile, in turn allowing the
use of feature matches at differing scene-depths. The degree of
tiling is an application specific parameter, but can be dynamically
assigned by considering the number of potential matches in each



tile area: there must (in general) be sufficient to have confidence in
the modal vector being correctly estimated.

The displacement vectors will clearly appear differently depend-
ing on which camera viewpoint they are relative to. A high degree
of confidence in the overall accepted matches is obtained by tak-
ing the intersection of the accepted modal matches as gained when
processed independently from both views. After displacement fil-
tering, in Figure 6, only 12 invalid matches remain (7%), none of
them obvious, and only 5 (3%) correct matches have been lost. The
very small proportion of incorrect matches should not deteriorate
the eventual reconstruction, due to the RANSAC approach in use,
though improvement of matching remains a topic of research.

2.4 Camera intrinsic calibration
With user-generated video from unknown consumer cameras we

have no idea of the optical system of the camera, and are unlikely
to have convenient footage of a known calibration object. Having a
good calibration of the cameras is however vital. While the effects
of an incorrect calibration on the 3D reconstruction of feature points
into world-space can be neglectably subtle, we wish to retrieve the
positions of the cameras. For this the internal parameters make the
difference between a camera physically located very close to the
world points, and a distant one using a high magnification lens.

We may presume a pinhole camera model, minimal pixel skew,
and an optical axis roughly coincident with the centre of the image
sensor. The pinhole model restricts the system’s use to captures
without significant lens distortion, but the majority of modern con-
sumer optics give sufficiently rectilinear projections for our fairly
weak accuracy requirements. No simplifications, other than con-
straining sanity bounds, are available for the focal length parameters
however, and unlike digital photographs these are not embedded in
file metadata. We can however, exploit the properties of video image
data: a series of frames close in time will capture almost the same
scene and should the camera rotate, even by a few degrees, during
this time, self-calibration is possible (assuming translation of the
camera, relative to the distance to the world-points, is negligible). If
the two image-planes formed from two frames are related by some
rotation, the camera must lie at the point where the plane normals
intersect, thus the depth-ambiguity is trivially resolved.

Clearly estimation of the intersection point relies heavily on find-
ing the transformation relating the image planes, with the incorpor-
ation of multiple image planes making the estimation more stable.
Unfortunately, the rare nature of stable, non-blurry, wide-angle shots
means that one may only have two frames to estimate the relation-
ship, and hence a technique capable of operating with only two
image-planes is highly desirable, albeit with the knowledge that the
results may not be ideal. The previous works [9] and [6] present
practical and appropriate methods to find the calibration via camera
rotation, but use multiple (three or more) images; the following
develops from their approaches to only require two frames.

The intrinsic camera matrix, expressing the optical parameters of
the camera, and part of the pinhole camera model, may be given as:

K “
»

–

αx γ u0
αy v0

1

fi

fl , (2)

where αx and αy express the optical focal length in pixels (in x and
y directions respectively), γ gives the pixel skewness coefficient,
and u0 and v0 the co-ordinates of the principal point. We assume
γ to be zero (i.e. non-skew pixels), and the principal point to lie at
the centre of the image, which by choosing an appropriate origin
for the 2D feature point co-ordinate system allows u0 and v0 to
both also be zero. Even assuming this in error is not fatal: in [4]

the over-parameterization of self-calibration on real images is criti-
cized; imposing sane values on the parameter, rather than seeking it
through minimization may in fact be more robust, with mere percent
inaccuracies resulting. An assumption of square pixels (i.e. αx “αy)
is not valid, as while true for many devices, various compression and
encoding techniques change the image aspect ratio, and information
to correct for this is not always available.

We take the equation from Proposition 3.2 in [9]:

P“ KRK´1 , (3)

where P is a unique two-dimensional projectivity (homography)
mapping co-ordinates from one image to another from the same
camera, and R is some rotation matrix. Correct formation of P
is critical to the later extraction of focal lengths, and so a robust
technique is required given the likely presence of some erroneous
feature matches. We use the normalized Direct Linear Transform
inside a RANSAC loop to find the homography with the most inliers,
followed by optimizing a homography generated from all inliers
using Levenberg-Marquardt, as described in Algorithm 4.6 of [8].

From Equation 3 R“ K´1PK and for R to be a rotation matrix,
RRT “ I. Therefore via substitution and rearrangement let

K´1PKpK´1PKqT ´ I “ D . (4)

Due to inaccuracies in P, D can never be precisely zero, but we
can optimize over αx and αy to find the smallest residual via

argmin
αx, αy

}vecpDq}1 , (5)

using vecpDq to turn the matrix D into a vector before calculating a
standard vector norm. This method easily allows estimation of αx
and αy from just a pair of frames from one video, so long as some
inter-frame rotation is present. Candidate frame-pairs are selected
by requiring an adequate displacement of 2D keypoints from one
frame to another.

As described, the zoom (focal length) must be the same in both
frames; this is a consequence of using the same K twice in Equa-
tion 3. Such a requirement both limits the available choice of frames,
and means we must have some way of detecting the absence of zoom-
change in order to have any confidence in the estimated parameters.

We remove this limitation by extending the above approach,
adding an extra scaling parameter s to describe the zoom-change, so
now

P“ K1RK´1
2 (6)

and

K1 “
»

–

αx
αy

1

fi

fl and K2 “
»

–

sαx
sαy

1

fi

fl (7)

(incorporating the previous presumptions on γ , u0 and v0).
We can now optimize as before, but over αx, αy and s. Naturally,

given the introduction of an extra parameter, this extension removes
a valid constraint on estimation when the frames are at the same
focal length, but results are rarely degraded by this, and allowing the
use of frames of differing zoom level means the number of eligible
frames is much greater.

Since the α values can vary over time, if a change of zoom level
occurs, it is necessary to estimate the α values from the frames
whose features will be used in 3D reconstruction — α values es-
timated at a different zoom level will lead to poor reconstruction.
Reconstruction uses the frame with the most filtered feature matches
to another frame in a different video; this is then also the reference
frame used in α estimation. The reference frame is used pair-wise
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Figure 7: Error-surface for varying αx and αy, for scene shown in
left half of Figure 6

against as many comparison frames as are suitable in the temporal
vicinity of the reference frame. ‘Suitable’ frames are found by
first expanding a window forwards and backwards in time from the
reference frame (up to a maximum of ˘1 minute) and performing
feature-based motion estimation against frames with a low relat-
ive blurriness. Taking the average of all the motion vectors, those
frames with a mean feature displacement in x or y greater than 2%,
but less than 20%, of the recording’s resolution are then flagged
as being usable for estimation of αx or αy respectively, subject to
there being enough feature matches. Before taking the mean focal
length of these flagged frames, the upper and lower quartiles of the
estimate range are discarded as a crude outlier filter, with the range
of the remaining distribution (the interquartile range (IQR)) giving
a measure of confidence in the estimate.

In Figure 7 we see the results of evaluating Equation 4, at constant
s, over a range of αx and αy, using two frames of the left-hand scene
of Figure 6 (other temporally local frames being of poor quality
or inappropriate displacement). A clearly defined minimum exists
around (3900, 5200). Simple optimization (e.g. gradient descent)
determines the minimum more precisely at (3871, 5188), s being 1
in this instance. This is therefore a case with a non-square (4:3) pixel
aspect ratio (as is common for HD video), and the estimation method
has properly permitted the later reconstruction stage to transparently
correct for it.

Note that the rotations required to recover these parameters are
quite small: in this case the overall rotation expressed by the ho-
mography is less than 6°, and the recovered rotation matrix may be
decomposed into yaw, pitch and roll rotations of approximately 4.2°,
3.8° and 0.4° respectively.

The focal length estimations are sensitive to rotations between
the images used in the homography, and as noted in Agapito et al.,
reliable independent estimation of αx and αy depends on having
some rotation about the camera’s optical axis. If no such rotation
is apparent from the 2D keypoint displacement, we must try altern-
ative reference frames from the ‘top ten’ frames (selected by the
subsection 2.2 method) until comparison frames having some small
axial rotation are found. While the α values derived will not be
directly applicable to the reconstruction, we infer the pixel aspect
ratio (PAR) of the video sequence, which will not change over time.
Normally this ratio is 1:1, indicating square pixels, but 4:3, as seen
above, is not uncommon. Having derived the PAR, estimation of α
at the time of the reconstruction frame may be performed with the
ratio of αx to αy constrained, yielding a viable answer even without
axial rotation. Recourse to such extra computation may be avoided
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Figure 8: Plan view of reconstruction of world points (ˆ), camera
locations (˝) and optical axes (—) from frames in Figure 6

if trustworthy metadata for aspect ratio correction are embedded in
the video.

2.5 3D reconstruction
Now having intrinsically calibrated cameras, and mostly correct

feature matches between viewpoints, we proceed to extrinsic calib-
ration, estimating the rotation and critically the translation between
each video sequence’s camera. This estimation is confined to the
instant captured by the frames whose data are used in reconstruction,
but the event situation implies that significant camera translation
over time is unlikely. As stated above, reconstruction uses the frames
with the most matches between viewpoints; using the static location
presumption, two inter-camera matched frame-pairs formed using
three cameras may use frames captured at different times by the
common camera.

Many methods are available to perform pose estimation, but in
our application, where having several viewpoints is likely, methods
which optimally calibrate multiple cameras, exploiting the data of
all cameras to constrain the overall geometry, are preferable. We
employ an adaptation of [12], which, while equivalent to many other
methods in the two camera case, can calibrate multiple cameras sim-
ultaneously and find least-squares-optimal estimates of the cameras’
poses. The adaptation is to run many calibrations sampling different
sets of the feature matches in a RANSAC framework, to allow for
remaining false inter-viewpoint matches.

Using the features already highlighted in Figure 6, a plan view
of reconstructed world points, along with camera poses, is given
in Figure 8. Note that since only two cameras are used in this
reconstruction it is not constrained by cameras at other viewpoints
which typically improve the reconstruction.

Considering the world points first, we see the advertising hoard-
ings have been correctly reconstructed as a flat plane, close to per-
pendicular to one of the cameras’ optical axes (the ‘l’ camera corres-
ponding to the left half of Figure 6). The angled corner hoardings
toward the right of the scene have also been correctly reconstructed,
angled and nearer to the cameras, while the higher level plane of
matches, behind the hoardings, is also correctly positioned.

Considering the camera poses, the camera orientations, given by
their optical axes in the plan, are entirely plausible. The x displace-
ment between the cameras is also acceptable, while the distances
of the cameras from the world points is broadly correct. The one
erroneous item is the relative camera positions in z: with the cam-
eras both in the grandstand the cameras’ differing z distances appear
too great. This is almost certainly due to some combination of two
things:

1. The cameras’ principal points not being quite centred in the
image.

2. Limitations of the focal length estimation method.
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Figure 9: Skateboarding situation from five viewpoints/cameras,
with the cameras positioned progressively further to the right

The focal length estimation is very sensitive to the formation of
the homography, which is necessarily inexact due to noise in the
feature co-ordinates, a rolling shutter capturing motion during the
exposure, minor radial distortion in the lens, and the camera motion
likely including some small translation. Figure 3 of [6] shows that,
on real data, errors in focal length estimation of around 10% are
not uncommon. Attenuating the right-most camera’s focal length
by 10% does indeed result in the two cameras being equidistant in
depth from the advertisements.

Following reconstruction, all camera positions, relative to one
‘anchor’ camera, are known, as desired. The by-product of 3D world
points may be of use to subordinate applications: creating a full 3D
model of the scene for instance, or automatically synchronizing the
videos. Our key application is in providing spatial context to content
playback, making possible interfaces like that seen in Figure 1.

3. VERIFICATION OF SYSTEM ON DATA
WITH KNOWN GROUND-TRUTH

While the results in Section 2 appear superficially plausible, it is
instructive to have some factual basis to claiming the performance of
the system. While the frame selection and feature matching methods
can be verified empirically, unfortunately the real-world data have
no ground truth against which to measure the reconstruction. Hence
we present here accuracy results based on our own data for which
the true values are known.

In the experiment, a wall of a building was recorded from mul-
tiple viewpoints, using a number of cameras, and modest panning
(rotational) motions included in the recording.

In Table 1 the estimated focal lengths for each camera are com-
pared to their calibrated values. In all cases αx was within ˘10 px
of αy, so one figure for α is presented. It can be seen that the errors
are generally in keeping with, or better than, the 10% recorded by
Agapito et al.

Taking the reconstructed width of the wall as the scaling length,
Table 2 compares other reconstructed lengths with their true values.
The percentage errors are small, and the absolute errors are well
within the tolerance of a few metres required by the application. It
is no surprise that the reconstruction with the less-well calibrated
cameras has lower accuracy.

4. A MULTI-CAMERA EXAMPLE
Figure 9 shows frames from footage of a person skateboarding in a

car park, recorded by five cameras with overlapping but nonidentical
views. As numbered, the views can be seen to proceed from camera
1 being left-most, to 5 being right-most. The reconstruction (Fig-
ure 10) uses features from the cars, the background coach, the fallen
jump obstacle and the surrounding trees.

As expected from examination of Figure 9 and Figure 10 the
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Figure 10: Plan view of reconstruction of world points (ˆ), camera
locations (˝) and optical axes (—) from frames in Figure 9

nearby car is correctly reproduced near-perpendicularly to camera
4’s optical axis, the row of immature trees to the left of the car
can clearly be seen along x “ ´2, the background coach appears
parallel to the car, and the wall of large trees to the right, seen in
the camera 1 image, form a solid line at right-angles to the coach
in the reconstruction. Furthermore, and importantly, the cameras
are correctly ordered left to right, with entirely visually plausible
depths, and the view vectors correspond with the elements of the
scene visible in the respective stills.

Perceptually correct (which is the measure that matters for our
application) results like this have also been achieved with recon-
structions we have formed using user-generated videos from other
sporting and musical events, but are not included here for brevity.

5. CONCLUSIONS
In this paper we have presented the design for an implemented

system taking unsynchronized, uncalibrated videos of an event,
and producing a 3D reconstruction of the scene and the relative
camera positions. On user-generated test data captured using various
consumer camera-phones and camcorders in a number of differing
environments the system presented has been capable of producing
perceptually accurate 3D outputs, and on our own validation data
the errors in reconstruction have been found to be acceptably low
for our application.

The design described above builds on a variety of earlier work,
and modifies and extends it where appropriate, forming an innov-
ative combination of stages and yielding a system for an original
application. Key features in the design, exploiting the event scen-
ario, are dealing with poor quality frames via a blurriness measure,
background feature matching permitting use of unsynchronized
videos, and camera self-calibration through camera rotation, using a
presumption of no gross camera motion relative to the scene.

The system design presented is still a subject of research, with
improvements in robust feature matching and camera calibration,
achieved via panoramic stitching methods, expected to improve
already satisfactory results further.



Table 1: Comparison of estimated focal length parameters with truth (values rounded to nearest 10 px)

Camera Calibrated α (px) Estimated α (px) Percentage error

Nikon D40 f =19.4mm (A) 2500 2730 9%
Nikon D40 f =28.3mm (B) 3470 3780 9%
Samsung Galaxy S III smartphone (C) 1570 1560 1%
Panasonic HC-V100 camcorder (D) 1790 1880 5%

Table 2: Comparison of reconstructed and actual distances, camera letters reference Table 1

Camera 1 Camera 2 Camera 1 distance to wall (m) Camera 2 distance to wall (m) Camera separation (m)

Real Recons. Error Real Recons. Error Real Recons. Error

A B 23.2 25.1 8% 23.2 25.3 9% 14.1 16.0 13%
C D 23.2 22.6 3% 21.6 21.4 1% 16.0 16.5 3%
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