9,439 research outputs found

    Stirring apparatus for plural test tubes Patent

    Get PDF
    Design of mechanical device for stirring several test tubes simultaneousl

    Frequency-Tunable Josephson Junction Resonator for Quantum Computing

    Full text link
    We have fabricated and measured a high-Q Josephson junction resonator with a tunable resonance frequency. A dc magnetic flux allows the resonance frequency to be changed by over 10 %. Weak coupling to the environment allows a quality factor of \thicksim7000 when on average less than one photon is stored in the resonator. At large photon numbers, the nonlinearity of the Josephson junction creates two stable oscillation states. This resonator can be used as a tool for investigating the quality of Josephson junctions in qubits below the single photon limit, and can be used as a microwave qubit readout at high photon numbers.Comment: 3 pages, 5 figure

    Deexcitation nuclear gamma-ray line emission from low-energy cosmic rays in the inner Galaxy

    Get PDF
    Recent observations of high ionization rates of molecular hydrogen in diffuse interstellar clouds point to a distinct low-energy cosmic-ray component. Supposing that this component is made of nuclei, two models for the origin of such particles are explored and low-energy cosmic-ray spectra are calculated which, added to the standard cosmic ray spectra, produce the observed ionization rates. The clearest evidence of the presence of such low-energy nuclei between a few MeV per nucleon and several hundred MeV per nucleon in the interstellar medium would be a detection of nuclear \gamma-ray line emission in the range E_ 0.1 - 10 MeV, which is strongly produced in their collisions with the interstellar gas and dust. Using a recent \gamma-ray cross section compilation for nuclear collisions, \gamma-ray line emission spectra are calculated alongside with the high-energy \gamma-ray emission due to {\pi} 0 decay, the latter providing normalization of the absolute fluxes by comparison with Fermi-LAT observations of the diffuse emission above E \gamma = 0.1 GeV. Our predicted fluxes of strong nuclear \gamma-ray lines from the inner Galaxy are well below the detection sensitivies of INTEGRAL, but a detection, especially of the 4.4-MeV line, seems possible with new-generation \gamma-ray telescopes based on available technology. We predict also strong \gamma-ray continuum emission in the 1-8 MeV range, which in a large part of our model space for low-energy cosmic rays exceeds considerably estimated instrument sensitivities of future telescopes.Comment: 22 pages, 7 figures, accepted for publication in ApJ; figures 6 and 7 replace

    Propagation of cosmic-ray nucleons in the Galaxy

    Full text link
    We describe a method for the numerical computation of the propagation of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. The models are adjusted to agree with the observed cosmic-ray B/C and 10Be/9Be ratios. Models with diffusion and convection do not account well for the observed energy dependence of B/C, while models with reacceleration reproduce this easily. The height of the halo propagation region is determined, using recent 10Be/9Be measurements, as >4 kpc for diffusion/convection models and 4-12 kpc for reacceleration models. For convection models we set an upper limit on the velocity gradient of dV/dz < 7 km/s/kpc. The radial distribution of cosmic-ray sources required is broader than current estimates of the SNR distribution for all halo sizes. Full details of the numerical method used to solve the cosmic-ray propagation equation are given.Comment: 15 pages including 23 ps-figures and 3 tables, latex2e, uses emulateapj.sty (ver. of 11 May 1998, enclosed), apjfonts.sty, timesfonts.sty. To be published in ApJ 1998, v.509 (December 10 issue). More details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.html Some references are correcte

    Lifetime Constraints for Late Dark Matter Decay

    Full text link
    We consider a class of late-decaying dark-matter models, in which a dark matter particle decays to a heavy stable daughter of approximately the same mass, together with one or more relativistic particles which carry away only a small fraction of the parent rest mass. Such decays can affect galactic halo structure and evolution, and have been invoked as a remedy to some of the small scale structure-formation problems of cold dark matter. There are existing stringent limits on the dark matter lifetime if the decays produce photons. By considering examples in which the relativistic decay products instead consist of neutrinos or electron-position pairs, we derive stringent limits on these scenarios for a wide range of dark matter masses. We thus eliminate a sizable portion of the parameter space for these late decay models if the dominant decay channel involves Standard Model final states.Comment: 13 pages, 7 figures. Replaced to match published version. Discussion expanded. References added. Accepted by Phys. Rev

    The SNS Cryogenic Control System: Experiences in Collaboration

    Get PDF
    The cryogenic system for the Spallation Neutron Source (SNS) is designed by Jefferson Laboratory (JLab) personnel and is based on the existing JLab facility. Our task is to use the JLab control system design [2] as much as practical while remaining consistent with SNS control system standards. Some aspects of the systems are very similar, including equipment to be controlled, the need for PID loops and automatic sequences, and the use of EPICS. There are differences in device naming, system hardware, and software tools. The cryogenic system is the first SNS system to be developed using SNS standards. This paper reports on our experiences in integrating the new and the old.Comment: 3 page

    STS-1 operational flight profile. Volume 5: Descent, cycle 3

    Get PDF
    The trajectory data presented are to be used for orbiter systems and subsystems evalation, flight and mission control center software verification, flight techniques and timeline development, crew training, and evaluation of operational mission suitability. The entry profile is very similar to cycle 2, however, elevon and body flap temperature margins have increased and the elevon schedule was changed. The terminal area energy management (TAEM) profile was completely reshaped to conform with new angle of attack constraints and left hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance induced angle of attack transients across the interface. The approach and landing phase was reshaped for a 20 deg glideslope and reduced velocity at touchdown. The definition of the runway threshold was standardized for all landing sites. This results in a shift at Edwards Air Force Base in aim points and touchdown relative to the threshold of 1000 feet. The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown

    Float zone processing in a weightless environment

    Get PDF
    Results are given for investigations into: (1) the physical limits which set the maximum practical diameters of Si crystals that can be processed by the float-zone method in a near weightless environment, and (2) the economic impact of large, space-produced Si crystals on the electronics industry. The stability of the melt is evaluated. Heat transfer and fluid flow within the melt as dependent on the crystal size and the degree and type of rotation imparted to the melt are studied. Methods of utilizing the weightless environment for the production of large, stress-free Si crystals of uniform composition are proposed. The economic effect of large size Si crystals, their potential applications, likely utilization and cost advantages in LSI, integrated circuits, and power devices are also evaluated. Foreseeable advantages of larger diameter wafers of good characteristics and the possibilities seen for greater perfection resulting from stress-free growth are discussed

    Production and propagation of cosmic-ray positrons and electrons

    Get PDF
    We have made a new calculation of the cosmic-ray secondary positron spectrum using a diffusive halo model for Galactic cosmic-ray propagation. The code computes self-consistently the spectra of primary and secondary nucleons, primary electrons, and secondary positrons and electrons. The models are first adjusted to agree with the observed cosmic-ray Boron/Carbon ratio, and the interstellar proton and Helium spectra are then computed; these spectra are used to obtain the source function for the secondary positrons/electrons which are finally propagated with the same model parameters. The primary electron spectrum is evaluated, again using the same model. Fragmentation and energy losses are computed using realistic distributions for the interstellar gas and radiation fields, and diffusive reacceleration is also incorporated. Our study includes a critical re-evaluation of the secondary decay calculation for positrons. The predicted positron fraction is in good agreement with the measurements up to 10 GeV, beyond which the observed flux is higher than that calculated. Since the positron fraction is now accurately measured in the 1-10 GeV range our primary electron spectrum should be a good estimate of the true interstellar spectrum in this range, of interest for gamma ray and solar modulation studies. We further show that a harder interstellar nucleon spectrum, similar to that suggested to explain EGRET diffuse Galactic gamma ray observations above 1 GeV, can reproduce the positron observations above 10 GeV without requiring a primary positron component.Comment: 25 pages including 8 figures and 1 table, latex, aaspp4.sty. To be published in ApJ 1998, v.493 (February 1 issue). Details can be found at http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
    corecore