2,175 research outputs found

    Magnetic imaging with an ensemble of Nitrogen Vacancy centers in diamond

    Full text link
    The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {\mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {\mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.Comment: 11 pages, 5 figures, figure 4 added, results unchange

    Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Get PDF
    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition (CVD) growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ~ 97 % probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.Comment: 6 pages, 4 figure

    Light-by-light scattering sum rules constraining meson transition form factors

    Full text link
    Relating the forward light-by-light scattering to energy weighted integrals of the \gamma* \gamma -fusion cross sections, with one real photon (\gamma) and one virtual photon (\gamma*), we find two new exact super-convergence relations. They complement the known super-convergence relation based on the extension of the GDH sum rule to the light-light system. We also find a set of sum rules for the low-energy photon-photon interaction. All of the new relations are verified here exactly at leading order in scalar and spinor QED. The super-convergence relations, applied to the \gamma* \gamma -production of mesons, lead to intricate relations between the \gamma \gamma -decay widths or the \gamma* \gamma -transition form factors for (pseudo-) scalar, axial-vector and tensor mesons. We discuss the phenomenological implications of these results for mesons in both the light-quark sector and the charm-quark sector.Comment: 32 pages, 7 figure

    Rare decay Z --> neutrino antineutrino photon photon via quartic gauge boson couplings

    Full text link
    We present a detailed calculation of the rare decay Z --> neutrino antineutrino photon photon via the quartic neutral gauge boson coupling Z-Z-photon-photon in the framework of the effective Lagrangian approach. The current experimental bound on this decay mode is then used to constrain the coefficients of this coupling. It is found that the bounds obtained in this way, of the order of 10110^{-1}, are weaker than the ones obtained from the analysis of triple-boson production at LEP-2Comment: 5 pages, 2 figures, to appear in Physical Review D Brief Report

    A qualitative optimization technique for biophysical neuron models with many parameters

    Get PDF
    We present a novel computational technique that enables more efficient optimization of qualitative features in biophysical neural models

    R^2 Dark Matter

    Get PDF
    There is a non-trivial four-derivative extension of the gravitational spectrum that is free of ghosts and phenomenologically viable. It is the so called R2R^2-gravity since it is defined by the only addition of a term proportional to the square of the scalar curvature. Just the presence of this term does not improve the ultraviolet behaviour of Einstein gravity but introduces one additional scalar degree of freedom that can account for the dark matter of our Universe.Comment: 6 pages, 1 figure, to appear in the Proceedings of the sixth International Workshop on the Dark Side of the Universe (DSU2010) Leon, Guanajuato, Mexico 1-6 June 201

    Engineered arrays of NV color centers in diamond based on implantation of CN- molecules through nanoapertures

    Full text link
    We report a versatile method to engineer arrays of nitrogen-vacancy (NV) color centers in dia- mond at the nanoscale. The defects were produced in parallel by ion implantation through 80 nm diameter apertures patterned using electron beam lithography in a PMMA layer deposited on a diamond surface. The implantation was performed with CN- molecules which increased the NV defect formation yield. This method could enable the realization of a solid-state coupled-spin array and could be used for positioning an optically active NV center on a photonic microstructure.Comment: 12 pages, 3 figure

    Bosonic Quartic Couplings at LHC

    Get PDF
    We analyze the potential of the CERN Large Hadron Collider (LHC) to study anomalous quartic vector-boson interactions Z Z gamma gamma, Z Z Z gamma, W+ W- gamma gamma, and W+ W- Z gamma through the weak boson fusion processes q q -> q q gamma gamma and q q -> q q gamma Z(-> l+ l-) with l = electron or muon. After a careful study of the backgrounds and how to extract them from the data, we show that the process p p -> j j gamma l+ l- is potentially the most sensitive to deviations from the Standard Model, improving the sensitivity to anomalous couplings by up to a factor 10^4 (10^2) with respect to the present direct (indirect) limits.Comment: 18 pages, 2 figures, revised versio
    corecore