23 research outputs found

    The Rhetoric of Failure: A Hyper-Dialog About Method in Economics and How to Get Things Going

    Full text link

    T cell surface redox levels determine T cell reactivity and arthritis susceptibility

    No full text
    Rats and mice with a lower capacity to produce reactive oxygen species (ROS) because of allelic polymorphisms in the Ncf1 gene (which encodes neutrophil cytosolic factor 1) are more susceptible to develop severe arthritis. These data suggest that ROS are involved in regulating the immune response. We now show that the lower capacity to produce ROS is associated with an increased number of reduced thiol groups (−SH) on T cell membrane surfaces. Artificially increasing the number of reduced thiols on T cells from animals with arthritis-protective Ncf1 alleles by glutathione treatment lowered the threshold for T cell reactivity and enhanced proliferative responses in vitro and in vivo. Importantly, T cells from immunized congenic rats with an E3-derived Ncf1 allele (DA.Ncf1(E3) rats) that cannot transfer arthritis to rats with an arthritis-associated Dark Agouti (DA)-derived mutated Ncf1 allele (DA.Ncf1(DA) rats) became arthritogenic after increasing cell surface thiol levels. This finding was confirmed by the reverse experiment, in which oxidized T cells from DA.Ncf1(DA) rats induced less severe arthritis compared with controls. Therefore, we conclude that ROS production as controlled by Ncf1 is important in regulating surface redox levels of T cells and thereby suppresses autoreactivity and arthritis development

    Trif-related adapter molecule is phosphorylated by PKCε during Toll-like receptor 4 signaling

    No full text
    PKCε has been shown to play a key role in the effect of the Gram-negative bacterial product LPS; however, the target for PKCε in LPS signaling is unknown. LPS signaling is mediated by Toll-like receptor 4, which uses four adapter proteins, MyD88, MyD88 adapter-like (Mal), Toll/IL-1R domain-containing adapter inducing IFN-β (Trif), and Trif-related adapter molecule (TRAM). Here we show that TRAM is transiently phosphorylated by PKCε on serine-16 in an LPS-dependent manner. Activation of IFN regulatory factor 3 and induction of the chemokine RANTES, which are both TRAM-dependent, were attenuated in PKCε-deficient cells. TRAMS16A is inactive when overexpressed and is attenuated in its ability to reconstitute signaling in TRAM-deficient cells. We have therefore uncovered a key process in Toll-like receptor 4 signaling, identifying TRAM as the target for PKCε

    Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain

    No full text
    Toll/IL-1R resistance (TIR) domain–containing adapter-inducing IFN-β (TRIF) is a Toll-like receptor (TLR) adapter that mediates MyD88-independent induction of type I interferons through activation of IFN regulatory factor 3 and NFκB. We have examined peptides derived from the TRIF TIR domain for ability to inhibit TLR4. In addition to a previously identified BB loop peptide (TF4), a peptide derived from putative helix B of TRIF TIR (TF5) strongly inhibits LPS-induced cytokine and MAPK activation in wild-type cells. TF5 failed to inhibit LPS-induced cytokine and kinase activation in TRIF-deficient immortalized bone-marrow–derived macrophage, but was fully inhibitory in MyD88 knockout cells. TF5 does not block macrophage activation induced by TLR2, TLR3, TLR9, or retinoic acid-inducible gene 1/melanoma differentiation-associated protein 5 agonists. Immunoprecipitation assays demonstrated that TF4 binds to TLR4 but not TRIF-related adaptor molecule (TRAM), whereas TF5 binds to TRAM strongly and TLR4 to a lesser extent. Although TF5 prevented coimmunoprecipitation of TRIF with both TRAM and TLR4, site-directed mutagenesis of the TRIF B helix residues affected TRIF–TRAM coimmunoprecipitation selectively, as these mutations did not block TRIF–TLR4 association. These results suggest that the folded TRIF TIR domain associates with TRAM through the TRIF B helix region, but uses a different region for TRIF–TLR4 association. The B helix peptide TF5, however, can associate with either TRAM or TLR4. In a mouse model of TLR4-driven inflammation, TF5 decreased plasma cytokine levels and protected mice from a lethal LPS challenge. Our data identify TRIF sites that are important for interaction with TLR4 and TRAM, and demonstrate that TF5 is a potent TLR4 inhibitor with significant potential as a candidate therapeutic for human sepsis
    corecore