103 research outputs found
Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates
We study a model for a two-mode atomic-molecular Bose--Einstein condensate.
Starting with a classical analysis we determine the phase space fixed points of
the system. It is found that bifurcations of the fixed points naturally
separate the coupling parameter space into four regions. The different regions
give rise to qualitatively different dynamics. We then show that this
classification holds true for the quantum dynamics.Comment: 13 pages, 7 eps figure
DDF and Pohlmeyer invariants of (super)string
We show how the Pohlmeyer invariants of the bosonic string are expressible in
terms of DDF invariants. Quantization of the DDF observables in the usual way
yields a consistent quantization of the algebra of Pohlmeyer invariants.
Furthermore it becomes straightforward to generalize the Pohlmeyer invariants
to the superstring as well as to all backgrounds which allow a free field
realization of the worldsheet theory.Comment: 17 pp, minor typos corrected, references to papers by Isaev and
Borodulin added, which contain essentially the same results as reported her
Cooling in a Bistable Optical Cavity
We propose a generic approach to nonresonant laser cooling of atoms/molecules
in a bistable optical cavity. The method exemplifies a photonic version of
Sisyphus cooling, in which the matter-dressed cavity extracts energy from the
particles and discharges it to the external field as a result of sudden
transitions between two stable states
Instability Heating of Sympathetically-Cooled Ions in a Linear Paul Trap
Sympathetic laser cooling of ions stored within a linear-geometry, radio
frequency, electric-quadrupole trap has been investigated using computational
and theoretical techniques. The simulation, which allows 5 sample ions to
interact with 35 laser-cooled atomic ions, revealed an instability heating
mechanism, which can prevent ions below a certain critical mass from being
sympathetically cooled. This critical mass can however be varied by changing
the trapping field parameters thus allowing ions with a very large range of
masses to be sympathetically cooled using a single ion species. A theoretical
explanation of this instability heating mechanism is presented which predicts
that the cooling-heating boundary in trapping parameter space is a line of
constant (ion trap stability coefficient), a result supported by the
computational results. The threshold value of depends on the masses of
the interacting ions. A functional form of this dependence is given
A Lexical Database of Portuguese Multiword Expressions
This presentation focuses on an ongoing project which aims at the creation of a large lexical database of Portuguese multiword (MW) units, automatically extracted through the analysis of a balanced 50 million word corpus, statistically interpreted with lexical association measures and validated by hand. This database covers different types of MW units, like named entities, and lexical associations ranging from sets of favoured co-occurring forms with high corpus frequency and low cohesion to strongly lexicalized expressions with no, or minimum, variation. This new resource has a two-fold objective: to be an important research tool which supports the development of collocation typologies and their integration in a larger theory of MW units; to be of major help in developing and evaluating language processing tools able of dealing with MW expressions.info:eu-repo/semantics/publishedVersio
QFT on homothetic Killing twist deformed curved spacetimes
We study the quantum field theory (QFT) of a free, real, massless and
curvature coupled scalar field on self-similar symmetric spacetimes, which are
deformed by an abelian Drinfel'd twist constructed from a Killing and a
homothetic Killing vector field. In contrast to deformations solely by Killing
vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of
motion and Green's operators are deformed. We show that there is a *-algebra
isomorphism between the QFT on the deformed and the formal power series
extension of the QFT on the undeformed spacetime. We study the convergent
implementation of our deformations for toy-models. For these models it is found
that there is a *-isomorphism between the deformed Weyl algebra and a reduced
undeformed Weyl algebra, where certain strongly localized observables are
excluded. Thus, our models realize the intuitive physical picture that
noncommutative geometry prevents arbitrary localization in spacetime.Comment: 23 pages, no figures; v2: extended discussion of physical
consequences, compatible with version to be published in General Relativity
and Gravitatio
Perturbation theory of the space-time non-commutative real scalar field theories
The perturbative framework of the space-time non-commutative real scalar
field theory is formulated, based on the unitary S-matrix. Unitarity of the
S-matrix is explicitly checked order by order using the Heisenberg picture of
Lagrangian formalism of the second quantized operators, with the emphasis of
the so-called minimal realization of the time-ordering step function and of the
importance of the -time ordering. The Feynman rule is established and is
presented using scalar field theory. It is shown that the divergence
structure of space-time non-commutative theory is the same as the one of
space-space non-commutative theory, while there is no UV-IR mixing problem in
this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference
Time-dependent unitary perturbation theory for intense laser driven molecular orientation
We apply a time-dependent perturbation theory based on unitary
transformations combined with averaging techniques, on molecular orientation
dynamics by ultrashort pulses. We test the validity and the accuracy of this
approach on LiCl described within a rigid-rotor model and find that it is more
accurate than other approximations. Furthermore, it is shown that a noticeable
orientation can be achieved for experimentally standard short laser pulses of
zero time average. In this case, we determine the dynamically relevant
parameters by using the perturbative propagator, that is derived from this
scheme, and we investigate the temperature effects on the molecular orientation
dynamics.Comment: 16 pages, 6 figure
Photoassociative Production and Trapping of Ultracold KRb Molecules
We have produced ultracold heteronuclear KRb molecules by the process of
photoassociation in a two-species magneto-optical trap. Following decay of the
photoassociated KRb*, the molecules are detected using two-photon ionization
and time-of-flight mass spectroscopy of KRb. A portion of the metastable
triplet molecules thus formed are magnetically trapped. Photoassociative
spectra down to 91 cm below the K(4) + Rb (5) asymptote have
been obtained. We have made assignments to all eight of the attractive Hund's
case (c) KRb* potential curves in this spectral region.Comment: 4 pages, 4 figure
Quantum Field Theory: Where We Are
We comment on the present status, the concepts and their limitations, and the
successes and open problems of the various approaches to a relativistic quantum
theory of elementary particles, with a hindsight to questions concerning
quantum gravity and string theory.Comment: To appear in: An Assessment of Current Paradigms in the Physics of
Fundamental Phenomena, to be published by Springer Verlag (2006
- …