103 research outputs found

    Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates

    Get PDF
    We study a model for a two-mode atomic-molecular Bose--Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.Comment: 13 pages, 7 eps figure

    DDF and Pohlmeyer invariants of (super)string

    Full text link
    We show how the Pohlmeyer invariants of the bosonic string are expressible in terms of DDF invariants. Quantization of the DDF observables in the usual way yields a consistent quantization of the algebra of Pohlmeyer invariants. Furthermore it becomes straightforward to generalize the Pohlmeyer invariants to the superstring as well as to all backgrounds which allow a free field realization of the worldsheet theory.Comment: 17 pp, minor typos corrected, references to papers by Isaev and Borodulin added, which contain essentially the same results as reported her

    Cooling in a Bistable Optical Cavity

    Get PDF
    We propose a generic approach to nonresonant laser cooling of atoms/molecules in a bistable optical cavity. The method exemplifies a photonic version of Sisyphus cooling, in which the matter-dressed cavity extracts energy from the particles and discharges it to the external field as a result of sudden transitions between two stable states

    Instability Heating of Sympathetically-Cooled Ions in a Linear Paul Trap

    Get PDF
    Sympathetic laser cooling of ions stored within a linear-geometry, radio frequency, electric-quadrupole trap has been investigated using computational and theoretical techniques. The simulation, which allows 5 sample ions to interact with 35 laser-cooled atomic ions, revealed an instability heating mechanism, which can prevent ions below a certain critical mass from being sympathetically cooled. This critical mass can however be varied by changing the trapping field parameters thus allowing ions with a very large range of masses to be sympathetically cooled using a single ion species. A theoretical explanation of this instability heating mechanism is presented which predicts that the cooling-heating boundary in trapping parameter space is a line of constant quq_u (ion trap stability coefficient), a result supported by the computational results. The threshold value of quq_u depends on the masses of the interacting ions. A functional form of this dependence is given

    A Lexical Database of Portuguese Multiword Expressions

    Get PDF
    This presentation focuses on an ongoing project which aims at the creation of a large lexical database of Portuguese multiword (MW) units, automatically extracted through the analysis of a balanced 50 million word corpus, statistically interpreted with lexical association measures and validated by hand. This database covers different types of MW units, like named entities, and lexical associations ranging from sets of favoured co-occurring forms with high corpus frequency and low cohesion to strongly lexicalized expressions with no, or minimum, variation. This new resource has a two-fold objective: to be an important research tool which supports the development of collocation typologies and their integration in a larger theory of MW units; to be of major help in developing and evaluating language processing tools able of dealing with MW expressions.info:eu-repo/semantics/publishedVersio

    Time-dependent unitary perturbation theory for intense laser driven molecular orientation

    Full text link
    We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.Comment: 16 pages, 6 figure

    QFT on homothetic Killing twist deformed curved spacetimes

    Full text link
    We study the quantum field theory (QFT) of a free, real, massless and curvature coupled scalar field on self-similar symmetric spacetimes, which are deformed by an abelian Drinfel'd twist constructed from a Killing and a homothetic Killing vector field. In contrast to deformations solely by Killing vector fields, such as the Moyal-Weyl Minkowski spacetime, the equation of motion and Green's operators are deformed. We show that there is a *-algebra isomorphism between the QFT on the deformed and the formal power series extension of the QFT on the undeformed spacetime. We study the convergent implementation of our deformations for toy-models. For these models it is found that there is a *-isomorphism between the deformed Weyl algebra and a reduced undeformed Weyl algebra, where certain strongly localized observables are excluded. Thus, our models realize the intuitive physical picture that noncommutative geometry prevents arbitrary localization in spacetime.Comment: 23 pages, no figures; v2: extended discussion of physical consequences, compatible with version to be published in General Relativity and Gravitatio

    Perturbation theory of the space-time non-commutative real scalar field theories

    Full text link
    The perturbative framework of the space-time non-commutative real scalar field theory is formulated, based on the unitary S-matrix. Unitarity of the S-matrix is explicitly checked order by order using the Heisenberg picture of Lagrangian formalism of the second quantized operators, with the emphasis of the so-called minimal realization of the time-ordering step function and of the importance of the \star-time ordering. The Feynman rule is established and is presented using ϕ4\phi^4 scalar field theory. It is shown that the divergence structure of space-time non-commutative theory is the same as the one of space-space non-commutative theory, while there is no UV-IR mixing problem in this space-time non-commutative theory.Comment: Latex 26 pages, notations modified, add reference

    Photoassociative Production and Trapping of Ultracold KRb Molecules

    Full text link
    We have produced ultracold heteronuclear KRb molecules by the process of photoassociation in a two-species magneto-optical trap. Following decay of the photoassociated KRb*, the molecules are detected using two-photon ionization and time-of-flight mass spectroscopy of KRb+^+. A portion of the metastable triplet molecules thus formed are magnetically trapped. Photoassociative spectra down to 91 cm1^{-1} below the K(4ss) + Rb (5p1/2p_{1/2}) asymptote have been obtained. We have made assignments to all eight of the attractive Hund's case (c) KRb* potential curves in this spectral region.Comment: 4 pages, 4 figure

    Quantum Field Theory: Where We Are

    Full text link
    We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory.Comment: To appear in: An Assessment of Current Paradigms in the Physics of Fundamental Phenomena, to be published by Springer Verlag (2006
    corecore