423 research outputs found

    Superconductivity in SrFe_(2-x)Co_xAs_2: Internal Doping of the Iron Arsenide Layers

    Full text link
    In the electron doped compounds SrFe_(2-x)Co_xAs_2 superconductivity with T_c up to 20 K is observed for 0.2 < x < 0.4. Results of structure determination, magnetic susceptibility, electrical resistivity, and specific heat are reported. The observation of bulk superconductivity in all thermodynamic properties -- despite strong disorder in the Fe-As layer -- favors an itinerant picture in contrast to the cuprates and renders a p- or d-wave scenario unlikely. DFT calculations find that the substitution of Fe by Co (x > 0.3) leads to the suppression of the magnetic ordering present in SrFe_2As_2 due to a rigid down-shift of the Fe-3d_(x^2-y^2) related band edge in the density of states.Comment: 5 pages, 3 figure

    Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94929/1/wrcr10188.pd

    Historical trends of airborne trace metals in Detroit from 1971 to 1992

    Full text link
    Ambient concentrations of particulate Fe, Zn, Ph, Ni, Cr, Cd and Hg were measured at nine sites located in the metropolitan area of Detroit from 1971 to 1992. The ambient concentrations of all the trace metals were found to be generally higher at industrial and commercial sites. The concentrations show significant variations between residential and commercial areas and between residential and industrial areas; however, no significant variation was found between the industrial and commercial settings. The spatial variation of trace metal levels within the urban area was influenced by the frequency distribution of the wind direction as well as type and location of emission sources. The ambient concentrations of the trace metals during the decade of 1971–1981 declined by 37–88%. In the 1980s many of the trace metals reversed this trend with the exception of Fe and Pb which continued to decline at annual rates of 2% and 9.8%, respectively. The sharp decrease in Pb concentrations during the 1980s, reflected the significant reduction of Pb content in gasoline from 0.28 g/liter in the 1982 to 0.026 g/liter in the 1989. The ambient concentrations of Zn, Ni, Cr, Cd and Hg showed an upward trend during the 1980s with an annual rate in the range of 0.6% to 10.6%. The long-term trends of selected U.S. market parameters, analyzed as potential long-term indicators of emission sources activityies, were consistent with the changes of ambient concentrations, the correlation coefficient being in the range of 0.58 to 0.84 for most of the trace metals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43917/1/11270_2004_Article_BF00157419.pd

    Cadmium concentrations in recent snow and firn layers in the Canadian arctic

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47997/1/128_2004_Article_BF00195499.pd

    Visualization and exploratory analysis of epidemiologic data using a novel space time information system

    Full text link
    Abstract Background Recent years have seen an expansion in the use of Geographic Information Systems (GIS) in environmental health research. In this field GIS can be used to detect disease clustering, to analyze access to hospital emergency care, to predict environmental outbreaks, and to estimate exposure to toxic compounds. Despite these advances the inability of GIS to properly handle temporal information is increasingly recognised as a significant constraint. The effective representation and visualization of both spatial and temporal dimensions therefore is expected to significantly enhance our ability to undertake environmental health research using time-referenced geospatial data. Especially for diseases with long latency periods (such as cancer) the ability to represent, quantify and model individual exposure through time is a critical component of risk estimation. In response to this need a STIS – a Space Time Information System has been developed to visualize and analyze objects simultaneously through space and time. Results In this paper we present a "first use" of a STIS in a case-control study of the relationship between arsenic exposure and bladder cancer in south eastern Michigan. Individual arsenic exposure is reconstructed by incorporating spatiotemporal data including residential mobility and drinking water habits. The unique contribution of the STIS is its ability to visualize and analyze residential histories over different temporal scales. Participant information is viewed and statistically analyzed using dynamic views in which values of an attribute change through time. These views include tables, graphs (such as histograms and scatterplots), and maps. In addition, these views can be linked and synchronized for complex data exploration using cartographic brushing, statistical brushing, and animation. Conclusion The STIS provides new and powerful ways to visualize and analyze how individual exposure and associated environmental variables change through time. We expect to see innovative space-time methods being utilized in future environmental health research now that the successful "first use" of a STIS in exposure reconstruction has been accomplished.http://deepblue.lib.umich.edu/bitstream/2027.42/112824/1/12942_2004_Article_41.pd

    Next generation ice core technology reveals true minimum natural levels of lead (Pb) in the atmosphere: insights from the Black Death

    Get PDF
    Current policies to reduce lead pollution in the air are based on the assumption that pre-industrial levels of lead in the air were negligible, safe or non-existent. This trans-disciplinary article shows that this is not the case, using ‘next-generation’ laser technology in climate science, in combination with detailed historical and archaeological records in as many as 7 languages, from all over Europe. We show that lead levels in the air have been elevated for the past 2000 years, except for a single 4-year period. This 4-year period corresponds with the largest known pandemic ever to ravage western Europe (the Black Death), resulting in a 40-50% reduction in population. This unprecedented historic population collapse was accompanied by dramatic economic collapse that halted lead mining and smelting, and related emissions in the air. This trans-disciplinary study is a collaboration led by Harvard University and the Climate Change Institute at the University of Maine, and researchers from the University of Heidelberg (Germany) and the University of Nottingham (UK). It uses next-generation technology and expertise in history, climate science, archaeology and toxicology, brought to bear in a highly detailed contribution to planetary health, with crucial implications for public health and environmental policy, and the history of human exposure to lead

    Thallium and cadmium in recent snow and firn layers in the Canadian Arctic by atomic fluorescence and absorption spectrometries

    Full text link
    Compared to the Antarctic and Greenland, the Canadian Arctic has seen extremely few trace metal studies on snow and ice. Surface, subsurface and depth samples of snow and firns were collected from the Agassiz Ice Cap, Ellesmere Island, Canada using clean room practices. Results for Tl (directly determined by LEAFS) and Cd (determined by GFAAS) are reported. To our knowledge, the thallium depth profile presented here is the first one so far reported for both polar systems, Greenland or other places. Tl concentrations peak in the winter-spring periods, when the Arctic atmosphere is loaded with foreign pollutants and suspended particulates which sometime severely reduce the visibility, creating a phenomenon commonly known as the Arctic haze. These results are in general accordance with the historical Arctic air pollution and acidity/conductivity data on ice cores. Surface concentrations of Tl range from 0.3 to 0.9 pg/g, which is a few times higher than those found in Antarctica. Cadmium shows seasonal characteristics similar to Tl although there is not a definite correlation between the two. However, there could be two predominant origins of metals which were deposited in the snow: Eurasian origin in January–April corresponding to high level metals (main deposition), and a less definite origin in May–December corresponding to low level metals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46458/1/216_1996_Article_63550332.pd

    Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    Full text link
    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μ g/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47931/1/10109_2005_Article_149.pd

    Lead content and isotopic composition in submound and recent soils of the Volga upland

    Get PDF
    Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead

    An examination of knowledge, attitudes and practices related to lead exposure in South Western Nigeria

    Get PDF
    BACKGROUND: Lead is a highly toxic and pervasive metal. Chronic exposure to low levels is responsible for significant health effects, particularly in children. Prevention remains the best option for reducing childhood lead exposure, however the knowledge, attitudes and practices to lead exposure in many developing countries is not known. Methods: We conducted four focus group discussions (FGD) to evaluate knowledge attitudes and practices to lead exposure in Nigeria. An FGD guide was developed from the literature and preliminary discussion with members of the public. Participants in the FGD were randomly selected from adults living in Ibadan, South Western Nigeria in 2004. RESULTS: We found that there was limited awareness of the sources of lead exposure in the domestic environment and participants had little knowledge of the health effects of chronic low-dose lead exposure. CONCLUSION: We conclude that the findings of this study should be used, in conjunction with others, to develop appropriate health education intervention for lead exposure in the domestic environment
    • …
    corecore