4,581 research outputs found

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure

    Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment

    Full text link
    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the Magnetorotational Instability

    Verifying raytracing/Fokker-Planck lower-hybrid current drive predictions with self-consistent full-wave/Fokker-Planck simulations

    Full text link
    Raytracing/Fokker-Planck (FP) simulations used to model lower-hybrid current drive (LHCD) often fail to reproduce experimental results, particularly when LHCD is weakly damped. A proposed reason for this discrepancy is the lack of "full-wave" effects, such as diffraction and interference, in raytracing simulations and the breakdown of raytracing approximation. Previous studies of LHCD using non-Maxwellian full-wave/FP simulations have been performed, but these simulations were not self-consistent and enforced power conservation between the FP and full-wave code using a numerical rescaling factor. Here we have created a fully-self consistent full-wave/FP model for LHCD that is automatically power conserving. This was accomplished by coupling an overhauled version of the non-Maxwellian TORLH full-wave solver and the CQL3D FP code using the Integrated Plasma Simulator. We performed converged full-wave/FP simulations of Alcator C-Mod discharges and compared them to raytracing. We found that excellent agreement in the power deposition profiles from raytracing and TORLH could be obtained, however, TORLH had somewhat lower current drive efficiency and broader power deposition profiles in some cases. This discrepancy appears to be a result of numerical limitations present in the TORLH model and a small amount of diffractional broadening of the TORLH wave spectrum. Our results suggest full-wave simulation of LHCD is likely not necessary as diffraction and interference represented only a small correction that could not account for the differences between simulations and experiment

    Oblique ion collection in the drift-approximation: how magnetized Mach-probes really work

    Get PDF
    The anisotropic fluid equations governing a frictionless obliquely-flowing plasma around an essentially arbitrarily shaped three-dimensional ion-absorbing object in a strong magnetic field are solved analytically in the quasi-neutral drift-approximation, neglecting parallel temperature gradients. The effects of transverse displacements traversing the magnetic presheath are also quantified. It is shown that the parallel collection flux density dependence upon external Mach-number is ncsexp[1(MMcotθ)]n_\infty c_s \exp[-1 -(M_{\parallel\infty}- M_\perp\cot\theta)] where θ\theta is the angle (in the plane of field and drift velocity) of the object-surface to the magnetic-field and MM_{\parallel\infty} is the external parallel flow. The perpendicular drift, \M_\perp, appearing here consists of the external \E\wedge\B drift plus a weighted sum of the ion and electron electron diamagnetic drifts that depends upon the total angle of the surface to the magnetic field. It is that somewhat counter-intuitive combination that an oblique (transverse) Mach probe experiment measures.Comment: Revised version following refereeing for Physics of Plasma

    Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source

    Full text link
    We have performed a systematic study of the Bremsstrahlung emission from the electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance Ion Source. The electronic spectral temperature and the product of ionic and electronic densities of the plasma are measured by analyzing the Bremsstrahlung spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the injected power. Within our uncertainty, we find an average temperature of ? 48 keV above 100W, with a weak dependency on the injected power and gas composition. Charge state distributions of extracted ion beams have been determined as well, providing a way to disentangle the ionic density from the electronic density. Moreover X-ray emission from highly charged argon ions in the plasma has been observed with a high-resolution mosaic crystal spectrometer, demonstrating the feasibility for high-precision measurements of transition energies of highly charged ions, in particular of the magnetic dipole (M1) transition of He-like of argon ions

    Experimental and computational characterization of a modified GEC cell for dusty plasma experiments

    Full text link
    A self-consistent fluid model developed for simulations of micro- gravity dusty plasma experiments has for the first time been used to model asymmetric dusty plasma experiments in a modified GEC reference cell with gravity. The numerical results are directly compared with experimental data and the experimentally determined dependence of global discharge parameters on the applied driving potential and neutral gas pressure is found to be well matched by the model. The local profiles important for dust particle transport are studied and compared with experimentally determined profiles. The radial forces in the midplane are presented for the different discharge settings. The differences between the results obtained in the modified GEC cell and the results first reported for the original GEC reference cell are pointed out

    Strongly Non-Equilibrium Bose-Einstein Condensation in a Trapped Gas

    Full text link
    We present a qualitative (and quantitative, at the level of estimates) analysis of the ordering kinetics in a strongly non-equilibrium state of a weakly interacting Bose gas, trapped with an external potential. At certain conditions, the ordering process is predicted to be even more rich than in the homogeneous case. Like in the homogeneous case, the most characteristic feature of the full-scale non-equilibrium process is the formation of superfluid turbulence.Comment: 4 pages, revtex, no figures. Submitted to PR

    Spherical probes at ion saturation in E × B fields

    Get PDF
    The ion saturation current to a spherical probe in the entire range of ion magnetization is computed with SCEPTIC3D, a newthree-dimensional version of the kinetic code SCEPTIC designed to study transverse plasma flows. Results are compared with prior two-dimensional calculations valid in the magneticfree regime (Hutchinson 2002 Plasma Phys. Control. Fusion 44 1953), and with recent semi-analytic solutions to the strongly magnetized transverse Mach probe problem (Patacchini and Hutchinson 2009 Phys. Rev. E 80 036403). At intermediate magnetization (ion Larmor radius close to the probe radius) the plasma density profiles show a complex three-dimensional structure that SCEPTIC3D can fully resolve, and, contrary to intuition, the ion current peaks provided the ion temperature is low enough. Our results are conveniently condensed in a single factor M[subscript c], function of ion temperature and magnetic field only, providing the theoretical calibration for a transverse Mach probe with four electrodes placed at 45◦ to the magnetic field in a plane of flow and magnetic field

    Slow electron holes in the Earth's magnetosheath

    Full text link
    We present a statistical analysis of electrostatic solitary waves observed aboard Magnetospheric Multiscale spacecraft in the Earth's magnetosheath. Applying single-spacecraft interferometry to several hundred solitary waves collected in about two minute intervals, we show that almost all of them have the electrostatic potential of positive polarity and propagate quasi-parallel to the local magnetic field with plasma frame velocities of the order of 100 km/s. The solitary waves have typical parallel half-widths from 10 to 100 m that is between 1 and 10 Debye lengths and typical amplitudes of the electrostatic potential from 10 to 200 mV that is between 0.01 and 1\% of local electron temperature. The solitary waves are associated with quasi-Maxwellian ion velocity distribution functions, and their plasma frame velocities are comparable with ion thermal speed and well below electron thermal speed. We argue that the solitary waves of positive polarity are slow electron holes and estimate the time scale of their acceleration, which occurs due to interaction with ions, to be of the order of one second. The observation of slow electron holes indicates that their lifetime was shorter than the acceleration time scale. We argue that multi-spacecraft interferometry applied previously to these solitary waves is not applicable because of their too-short spatial scales. The source of the slow electron holes and the role in electron-ion energy exchange remain to be established

    How to make large, void free dust clusters in dusty plasma under microgravity

    Full text link
    Collections of micrometer sized solid particles immersed in plamsa are used to mimic many systems from solid state and fluid physics, due to their strong electrostatic interaction, their large inertia, and the fact that they are large enough to be visualized with ordinary optics. On Earth, gravity restricts the so called dusty plasma systems to thin, two-dimensional layers, unless special experimental geometries are used, involving heated or cooled electrons, and/or the use of dielectric materials.In micro-gravity experiments, the formation of a dust-free void breaks the isotropy of three-dimensional dusty plasma systems. In order to do real three-dimensional experiments, this void has somehow to be closed. In this paper, we use a fully self-consistent fluid model to study the closure of a void in a micro-gravity experiment, by lowering the driving potential. The analysis goes beyond the simple description of the virtual void, which describes the formation of a void without taking the dust into account. We show that self-organization plays an important role in void formation and void closure, which also allows a reversed scheme, where a discharge is run at low driving potentials and small batches of dust are added. No hysteresis is found this way. Finally, we compare our results to recent experiments and find good agreement,but only when we do not take charge-exchange collisions into account
    corecore