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Abstract

The anisotropic fluid equations governing a frictionless obliquely-flowing plasma
around an essentially arbitrarily shaped three-dimensional ion-absorbing object in a
strong magnetic field are solved analytically in the quasi-neutral drift-approximation,
neglecting parallel temperature gradients. The effects of transverse displacements
traversing the magnetic presheath are also quantified. It is shown that the paral-
lel collection flux density dependence upon external Mach-number is n∞cs exp[−1 −
(M‖∞ −M⊥ cot θ)] where θ is the angle (in the plane of field and drift velocity) of the
object-surface to the magnetic-field and M‖∞ is the external parallel flow. The perpen-
dicular drift, M⊥, appearing here consists of the external E ∧B drift plus a weighted
sum of the ion and electron diamagnetic drifts that depends upon the total angle of
the surface to the magnetic field. It is that somewhat counter-intuitive combination
that an oblique (transverse) Mach probe experiment measures.

Ion collection by solid objects immersed in a plasma is a problem of perennial interest in
plasma physics. It provides the basis for the measurement of plasma parameters by electric
(Langmuir) probes[1] as well as the charging of dust[2] and spacecraft[3]. The present work
addresses the situation where the ion Larmor radius (in the background magnetic field B)
is much smaller than the object, so that perpendicular plasma flow is strongly constrained.

This problem has important similarities to the solution of the flow of plasma to a plane
aligned obliquely to the field, the most obvious example being a tokamak divertor plate.
That problem can be formulated[4] as one-dimensional, taking the coordinates in the plane
as being ignorable. However, it is well established that no spatially-varying solution of the
quasi-neutral plasma equations in one dimension is possible without additional sources of
particles (e.g. through ionization) or momentum (e.g. from collisions). Recent studies of this
problem of the one-dimensional magnetized plasma and oblique presheath (e.g. [5, 6]) have
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mostly focussed on collisions as the mechanism allowing the acceleration of the plasma into
the magnetic presheath. For localized probes, however, if one conceptualizes the problem
as being dominated by the one-dimensional dynamics along the field, the cross-field flux
divergence is the most natural effective source to permit parallel gradients.

Prior theoretical probe studies have focussed on situations where the cross-field magnetized-
ion flux can be described (somewhat phenomenologically) as diffusive. The full numerical
solutions for this formulation [7, 8] yield the dependence of the collected ion flux density
on the plasma density and temperature, and the parallel (to B) Mach-number. That pro-
vides the theoretical calibration factor for a (parallel) Mach-probe (a probe with electrodes
facing parallel and anti-parallel to the field), when the perpendicular drift velocity is ignor-
able. This “calibration” proves to be in good agreement with independent measurements
and calculations [9] and has been widely adopted for experimental interpretation.

The approximate one-dimensional diffusive treatment has been generalized[10] to include
an additional perpendicular plasma drift velocity, accounting for the boundary-condition
modification[11] that the transverse drift causes. Measuring the dependence of the ion col-
lection current-density on orientation of oblique probe faces then allows one to deduce the
perpendicular as well as the parallel external drift velocity. The generalized solution can
be shown[1] to be a simple Galilean transformation of the solution for zero transverse drift,
which incidentally reminds us of the elementary physical equivalence of E ∧ B drift past a
fixed object and motion of the object through a stationary plasma. The equivalence also in-
dicates, though, that the generalized diffusion solution is rigorously valid only for an oblique
surface of effectively infinite dimension in the transverse drift direction (so that the Galilean
equivalence in this direction is valid), but finite in the direction perpendicular to both flow
and magnetic field (so that diffusion in this perpendicular direction dominates the cross-field
divergence). Practical Mach-probes generally do not have this configuration. They are more
often multi-faceted ‘Gundestrup’ types[12, 13, 14], where many short adjacent collectors are
used with different orientations. So it is not obvious that the generalized diffusive solution
applies.

In fact, when there is substantial pre-existing cross-field drift of the ions, it is perhaps
physically more reasonable to regard that drift as the dominant cross-field transport mech-
anism, and to ignore diffusion. Gunn [15, 9] has explored this problem, with a uniform
impressed cross-field drift, in two dimensions with his particle-in-cell code. This drift physics
is appropriate to many space and astrophysical problems too; for example to the interaction
of Jupiter’s satellites with its magnetosphere. It is the purpose of the present work to de-
rive a general analytic (3-dimensional) solution to this purely advective problem, with fully
self-consistent drift velocity.

First, to introduce the solution by characteristics, we recall a recent complete exact
solution to this problem[16] for an arbitrary shaped probe under the model ansatz that the
perpendicular drift velocity is uniform. This is a generalization of an earlier self-similar
solution[17] mathematically equivalent to a one-dimensional free expansion into a vacuum.
The very simple general analytic result obtained for the ion flux is gratifyingly close to the
diffusive-plasma result, and hence to the PIC calculations of Gunn (which include full ion
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distribution-function parallel gradients). The solution demonstrates that provided the probe
is convex, the flux is not affected (for negligible Larmor radius) by spatial derivatives of the
surface angle in the drift-direction. The uniform drift ansatz is justified by inspection only
when the probe is two-dimensional; so that the coordinate perpendicular to the field and
drift is ignorable and the probe-perturbation of the plasma does not introduce additional
drifts except along the ignorable coordinate. Again, practical probes are generally not well-
approximated as two-dimensional, so the question remains as to whether that uniform-drift-
velocity solution applies in practice.

The following remarkable result is rigorously demonstrated in section 3. The ion flux to
the probe surfaces derived for uniform-drift-velocity does apply even when the full spatially-
varying self-consistent drift velocity, including the perturbation from an arbitrarily-shaped
three-dimensional probe, is accounted for. When the external drift arises purely from electric
field, one can obtain the full self-consistent spatial dependence of the density and velocity
throughout the perturbed plasma region, using an elementary geometric algorithm. Some
examples are given.

Furthermore, external diamagnetic drifts can also be included, again for arbitrary-shaped
three-dimensional probes. They make important but counterintuitive contributions to the
observed ion current density. In addition to the effects that arise in the plasma, it is essen-
tial to account for transverse displacements that arise in the magnetic presheath; they are
calculated in section 4. Such local drifts in the magnetic presheath have previously been
identified[18, 19] as important contributors to oblique boundary conditions. The present
work provides a more general solution of the magnetic presheath displacement effects, dis-
pensing with small-angle approximations.

The final result is that a transverse Mach-probe measures effectively the sum of the
external E∧B drift and a combination of the ion and electron diamagnetic drifts. At small
angles between the field and the collector, the dominant diamagnetic term is the electron
diamagnetic drift, which of course is generally in the opposite direction to the ion diamagnetic
drift.

The presheath displacements can give rise to bias in Mach probe measurements. Its
relative magnitude is of order the ratio of Larmor radius to electrode size. The effects of
orthogonal displacements in the plasma region are also calculated rigorously. They mod-
ify the expression for the flux in ways that are usually of little importance for practical
measurements.

1 Formulation

We analyse the dynamics of the ion-fluid through the steady-state continuity and momentum
equations

∇.(nv) = 0 (1)

mn(v.∇)v = −nZe∇φ−∇p + nZe(v ∧B) , (2)
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where m, Z, n, p, Ti, v are the ion mass, charge-number, density, pressure, temperature,
and velocity, and φ is the potential. We split the momentum equation into the components
parallel (‖) and perpendicular (⊥) to the (assumed uniform) magnetic field, and take the
cross-product with B of the perpendicular part to obtain the form

v⊥ = −
[(
∇⊥φ +

1

nZe
∇⊥p

)
+

m

Ze
(v.∇)v⊥

]
∧ B

B2
. (3)

We can immediately identify the first two terms in this expression as the E ∧ B and dia-
magnetic drifts. The last term can be considered to be the polarization drift, which we will
regard as ignorable. The approximation of omitting the polarization drift requires the Lar-
mor radius to be small c.f. the perpendicular scale-length, generally the probe dimensions.
It can be shown by a posteriori calculation that the polarization drift is smaller than the
imposed perpendicular drift by a factor that is second-order in the Larmor radius. Ignoring
the polarization drift term is the meaning here of the expression “drift-approximation”. By
taking B to be uniform we have of course eliminated the grad-B and curvature drifts. We
adopt the simplest possible fluid closure scheme, that the ion temperature, Ti, is invari-
ant, so that the pressure is simply proportional to density. Together with dropping the the
polarization drift, this makes v⊥ divergenceless:

v⊥ = −
(
∇⊥φ +

1

nZe
∇⊥p

)
∧ B

B2
= −∇⊥

(
φ +

Ti

Ze
ln n

)
∧ B

B2
. (4)

Under these approximations the continuity and parallel-momentum equations become

(v.∇) ln n +∇‖v‖ = 0 (5)

(v.∇)v‖ +
Ze

m
∇‖

(
φ +

Ti

Ze
ln n

)
= 0 , (6)

while the perpendicular-momentum conservation is expressed by the drift v⊥ expression.
The potential is eliminated from these equations by accounting for the self-consistent

solution of the electric field arising from the ion and electron densities. The electron density
response along the magnetic field is, as usual, taken to involve rapid equilibration; so that
the electron pressure gradient is balanced by electric field:

∇‖φ = (Te/e)∇‖ ln ne , (7)

where the parallel gradient of the electron temperature, ∇‖Te, is taken to be zero and the
electron density is ne. Assuming that the Debye length is much smaller than the probe, we
will treat the plasma as quasi-neutral, so that ne = Zn.

Using the notation c2
s ≡ (ZTe + Ti)/m and M ≡ v/cs, the ion equations then take the

normalized form:

M.∇ ln n +∇‖M‖ = 0 (8)

M.∇M‖ +∇‖ ln n = 0 , (9)
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which can be rearranged by adding and subtracting to show explicitly the “characteristics”
[20]

(M.∇+∇‖)(ln n + M‖) = 0 (10)

(M.∇−∇‖)(ln n−M‖) = 0 . (11)

Thus the quantities (ln n±M‖) are constant along their corresponding characteristics dx =
(M±B/B)ds. And we can fully solve the problem by analysis of the characteristics.

2 Uniform perpendicular-velocity ansatz

First we review the solution under the condition that the perpendicular velocity is simply
a constant, M⊥, independent of space. This ansatz is clearly justified if the coordinate
perpendicular to B and M⊥ is ignorable. See ref [16] for additional details and explanation
of the following derivation. We choose axes such that B is aligned along x and M⊥ = Mhŷ
along y. The requirements expressed by the characteristics (10, 11) are that both

(ln n + M‖) = const along dx = dy(M‖ + 1)/Mh, (12)

and
(ln n−M‖) = const along dx = dy(M‖ − 1)/Mh. (13)

These will be referred to respectively as the positive and negative characteristics.
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Figure 1: Construction of the solutions at different points. P0 is in the unperturbed re-
gion. For P1 the characteristics are shown. P3 is in a concave region and so its positive
characteristic is not tangent at P3. A value θ > π/2 such as for P4 is not problematic.

For definiteness, we now consider plasma that is on the higher-x side (to the right) of the
object. Figure 1 will be used for illustration. For any point in the plasma, a positive and a
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negative characteristic pass through it. If both characteristics originate in the unperturbed
plasma at y → −∞, and do not enclose the object, then values at the point satisfy both
ln n + M‖ = ln n∞ + M∞ and ln n − M‖ = ln n∞ − M‖∞ (where ∞ indicates values in
the unperturbed region). These simultaneous equations have only one solution: n = n∞,
M‖ = M‖∞, showing that the point is in the unperturbed region, for example: P0. The
characteristics for such points are straight lines with slopes Mh/(M‖∞ ± 1).

The most important case is when just one of the characteristics originates not at y =
−∞, but on the surface of the object (e.g. P1). The positive characteristic is always to
the left of the negative characteristic, when tracing backward from a common point. So
the characteristic that originates on the object is the positive one. On that characteristic,
(ln n + M‖) is constant, but not equal to the unperturbed value. Each point along the
positive characteristic satisfies also ln n − M‖ = ln n∞ − M‖∞ because there are negative
characteristics from infinity to each point. The only way to satisfy these two requirements
is that, along the positive characteristic, M‖ = const and n = const. If M‖ = const, then
the slope of the characteristic, Mh/(M‖ + 1) is constant. It is a straight line.

The line’s slope is determined by the absorbing boundary condition at the plasma edge.
That condition requires[16] M‖ to be as negative as possible consistent with the overall
solution, which requires the greatest possible slope-angle θ ≡ arctan[Mh/(M‖ + 1)] (even
perhaps such that θ > π/2). The characteristic must therefore always be tangential to
the object boundary where it intersects it. Thus, all positive characteristics that originate
on the boundary do so as tangents, and for any point in the perturbed plasma region the
positive characteristic is that straight line passing through the point which has greatest θ and
originates as a tangent on the object. Once that line is determined geometrically, its slope
determines M‖ and hence n at all points along it. If the steepest tangent angle is less than
θm = arctan[Mh/(M‖∞ + 1)], then the positive characteristic does not intersect the object,
but has slope θ = θm; and the point is in unperturbed plasma. The entire solution for the
plasma in the perturbed neighborhood of an arbitrary-shaped object is thus

n = n∞ exp(M‖ −M‖∞), M‖ = Mh cot θ − 1. (14)

The solution (14) provides an extremely simple formula for the ion flux to a surface not
affected by concavity. Adding the perpendicular and parallel components, the total flux
density along the outward normal within the (x, y)-plane, i.e. in the direction (− sin θ, cos θ),
is ncs(Mh cos θ −M‖ sin θ) = ncs sin θ. Written as flux per unit area perpendicular to the
magnetic field, this is

Γ‖ = n∞cs exp[−1− (M‖∞ −Mh cot θ)]. (15)

First, this form indicates, importantly, that for points not in a concave region of the
object, the collected flux depends only on the angle of the surface there, and not on the
shape of the object at smaller y. Second, the exponential dependence upon M‖∞ is within
10% of the dependence, exp[−1−1.1(M‖∞−Mh cot θ)], that fits the diffusive solution[10, 1].
Third, consideration of the characteristics shows unambiguously that leading faces, for which
θ < θm receive simply the unperturbed flux [Γ‖ = n∞cs(Mh cot θ−M‖∞)], while trailing faces,
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even those for which M‖∞ −Mh cot θ > 1, are governed by the formula (15). The boundary
condition at the magnetic presheath edge is just the same as what is sometimes called the
“magnetized Bohm condition” but arises here naturally from the analysis of the quasi-neutral
equations.

In a concave region of the object, e.g. at P3, the surface angle (local tangent) θs, is
smaller than the characteristic’s angle θ, and the distinction must be retained. This leads to
an enhanced ion flux, equal to equation (15) times the extra factor (Mh cot θs−Mh cot θ+1).

3 Accounting for self-consistent drifts

The presence of the probe perturbs the plasma potential and density, for example as cal-
culated in the model case of the previous section. Most probes are of limited extent in the
direction (z) perpendicular to the plane containing B and M⊥∞, and indeed may have a
non-zero z-component of the normal to the collecting surface. The plasma perturbations
therefore give rise to spatially-varying ion drifts that frequently break the (z-translational)
symmetry assumption used to justify the homogeneous-M⊥ ansatz. So we must now return
to the full equations (10, 11) accounting for the complete, self-consistent, spatially-varying,
perpendicular velocity.

The interesting case is of points for which (only) one of the characteristics starts not at
infinity but on the probe itself. As before, for definiteness, but without loss of generality, we
will take that to be the positive characteristic. At this point then (ln n+M‖) 6= (ln n∞+M‖∞);
nevertheless, because of the negative characteristic, it is still true that (ln n−M‖) = (ln n∞−
M‖∞) = const. This shows that in a region whose points have any characteristic starting
at infinity, the nature of the solution is of the form M‖ = M‖(n), and especially ∇M‖
is parallel to ∇n. Consequently if there is a self-consistent combination of density and
velocity fields {n, M‖, M⊥ = M⊥0} that satisfies the advection equations (10, 11) (and
the drift equation, 4), any perpendicular vector field, M⊥1, that satisfies M⊥1.∇n = 0, also
satisfies M⊥1.∇M‖ = 0. We can therefore subtract any such M⊥1 from M⊥ without affecting
the characteristic equations (10, 11). In other words, the combination {n, M‖, M⊥ =
(M⊥0 − M⊥1)} also satisfies the characteristic equations (though not the drift equation,
4). Moreover, the subtraction of M⊥1 leaves the boundary condition at the plasma edge
invariant provided probe curvature is small compared with 1/ρs. The invariance follows
from the boundary condition being that the positive characteristic be tangent to the surface.
If the surface is expressed by the equation s(x, y, z) = 0, then tangency is dx.∇s = 0,
which along the characteristic is (M‖ + 1)∇‖s + M⊥.∇⊥s = 0. In so far as ∇s and ∇n are
parallel (i.e. the density is invariant in the tangential directions) subtracting M⊥1 leaves this
condition unchanged. But n is indeed invariant along the surface when given by eq (14)
provided that the surface angle (θs) gradient (i.e. curvature) can be ignored.

The significance of these observations is profound. It means that although the actual
perpendicular velocity M⊥ may be very complicated, and include drifts arising from the
self-consistent potential- and density-gradients caused by the presence of the probe, we do
not have to solve the associated complicated characteristics. Instead, we can subtract from
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M⊥ any drift that satisfies M⊥1.∇n = 0, and solve the resulting simpler characteristics. The
resulting solution for n and M‖ is correct then also for the full drift M⊥ expression.

3.1 Pure E ∧B external drift

Consider first the case when the unperturbed plasma has uniform density (n∞ = const)
as well as temperature, but has a uniform impressed perpendicular electric field in the z-
direction perpendicular to the field , (B/B = x̂), giving rise to an E∧B drift. In other words,
we have a non-uniform potential, φ∞(z), such that ∇φ∞ = −ẑE; so that the homogenous
drift is vh = ŷE/B = Mhcs.

In the presence of the probe, the electron parallel momentum (force-balance) equation
can be integrated along the field, from infinity to any position to give the perturbed potential

φ− φ∞(z) = (Te/e) ln(n/n∞) . (16)

We substitute this into the drift expression to get

v⊥ = −∇
(
φ∞ +

Te

e
ln(n/n∞) +

Ti

Ze
ln n

)
∧ B

B2
(17)

= −
(
∇φ∞ +

mc2
s

Ze
∇ ln n

)
∧ B

B2
. (18)

Or, in normalized form:
M⊥ = Mh − ρs∇ ln n ∧B/B , (19)

where ρs is the ion Larmor radius at the sound speed. The perpendicular drift veloc-
ity thus consists of a uniform term Mh, equal to the external drift, plus a term M⊥1

(= −ρs∇ ln n ∧ B/B) arising from local gradients of density (and associated potential),
which satisfies M⊥1.∇n = 0. Our approach is therefore to solve along characteristics defined
not by the complicated full drift velocity M⊥, but using the uniform external drift velocity
Mh which arises from subtracting off M⊥1, as we have shown we are permitted to do because
M⊥1.∇n = 0. But such an approach, of using a uniform impressed perpendicular drift, is
precisely the ansatz solved in the previous section, albeit without this detailed justification.
Therefore, the solution obtained there applies without modification. What is modified is
that the condition of translational invariance in the orthogonal (z-) direction is removed. In
other words, the restriction that the probe be two-dimensional, which was invoked previously
to justify the neglect of the density-gradient-induced drifts is proven here to be unnecessary.
The results of that section, the dependence of n on M‖, the spatial variation of M‖ embodied
in the equation tan θ = Mh/(M‖ + 1), and the surface flux expression, apply to any shape
of three-dimensional probe, provided only that the condition of convexity (that the surface
is not reentrant) is satisfied. This convexity condition must be applied along the original
characteristic (before subtracting M⊥∞) so it depends on the full 3-D shape of the probe
(and the z-drifts).

The flux-density of ions from the plasma to the probe surface in this case is given by
the vector sum of Mh and M‖ because the additional term M⊥1 is always locally tangential
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to the surface, even if the surface-normal has a non-zero z-component. Therefore eq (15) is
valid.

Figure 2: Contours of M‖ + 1 = 1 + M‖∞ + ln(n/n∞) at intervals of 0.1, in planes of
constant-x near a sphere of unit radius in a plasma with external drift velocity M‖∞ = 0.2,
Mh = 0.24.

As an illustration of this complete solution of the problem, Fig 2 shows a representation
of the 3-Dimensional variation of M‖ and equivalently ln n by contours of the quantity M‖+1
drawn in perpendicular planes at various distances from a spherical object. Regions empty
of contours to lower-y (left) of the contours shown have uniform unperturbed plasma. To
the right of the contours is the wake region where the equations are not valid.

A second illustration is in Fig 3, which shows the contours for a pyramid shaped probe
similar to what is used in Alcator C-Mod experiments[21]. A different drift velocity is
illustrated.

3.2 Inclusion of external ∇n diamagnetic drift

The presence of a diamagnetic drift arising from external density gradient leads to several
complicating factors. We consider an unperturbed density, n∞, that in this case is not
uniform but is a function also of perpendicular position. The usual case has∇⊥φ∞ and∇⊥n∞
approximately parallel to each other, because both are perpendicular to the flux surface in
a confined plasma. This is actually essential for the consistency of the unperturbed state,
if it has no parallel gradients. Then the total drift velocity does not satisfy ∇.(n∞v∞) = 0
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Figure 3: Contours of M‖+1 = 1+M‖∞+ln(n/n∞) at intervals of 0.1, in planes of constant-
x near a pyramidal Mach probe in a plasma with external drift velocity M‖∞ = −0.1,
Mh = 0.15.

unless B.(∇φ∞∧∇n∞) = 0 so that the drifts arising from the φ and n gradients are parallel
to each other. We stick to this case here, and consistently take all external gradients to be
in the z-direction, but note that effects in tokamak scrape-off-layers where parallel gradients
are present and give rise to cross-flux-surface drifts are thereby ignored. In other words, we
are dealing with a case of negligible parallel gradients in the external plasma.

We suppose that the external logarithmic gradient of the density is constant:

∇ ln n∞(z) = ẑ/Ln, (20)

where Ln is the (constant) density scale length. Equations (16) and (17) still apply. We
still can rely upon integration along the negative characteristic to write down a relationship
between n and M‖, but that relationship is now

ln n−M‖ = ln(n∞(z∞))−M‖∞, (21)

where n∞(z∞) is the unperturbed value of density at large distance from the probe, but
at a value, z∞, of z corresponding to tracking backward along the negative characteristic
from the point of interest. Because n∞ is a function of z when there are diamagnetic drifts,
the value of ln n∞(z∞) depends upon the total z-displacement, δz = z − z∞ between the
characteristic’s start and the point of interest. Thus it is no longer the case that n = n(M‖).

Write the relationship between density and M‖, deduced from the negative characteristic
integration as

ln(n/n∞(z)) = −M‖∞ + M‖ − δz/Ln. (22)
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In this expression, δz is not a constant. We will demonstrate in the following, however, that
a solution exists in which δz is a function only of M‖. So taking δz = δz(M‖) we observe
that ln(n/n∞) is also a function only of M‖. [Here and following we use the notation n∞
without an argument to denote the unperturbed density at the position of the point, n∞(z)
not n∞(z∞).] The drift velocity from eq (17) can be written

v⊥ = −
[
∇
(
φ∞ +

Ti

Ze
ln n∞

)
+

mc2
s

Ze
∇ ln(n/n∞)

]
∧ B

B2
, (23)

in which the first two terms give rise to perpendicular Mach number Mh = ME + Mni, the
sum of external E ∧B and ion diamagnetic drifts. The final term, which we identify as M⊥1

is perpendicular to ∇ ln n/n∞ and, because ln n/n∞ is a function of M‖, perpendicular also
to ∇M‖.

Now we write the positive characteristic equation so as to use these expressions:

0 =
d

csdt

∣∣∣∣∣
+

(
ln n + M‖

)
=

d

csdt

∣∣∣∣∣
+

(
ln n/n∞ + M‖

)
+ Mz/Ln

= Mz/Ln +
d

csdt

∣∣∣∣∣
+

(
2M‖ − δz/Ln

)
= Mz/Ln +

d

csdt

∣∣∣∣∣
+

(2 ln n/n∞ + δz/Ln) , (24)

where we use the notation

d

csdt

∣∣∣∣∣
±
≡ M.∇±∇‖ = (M‖ ± 1)

∂

∂x
+ My

∂

∂y
+ Mz

∂

∂z
(25)

for the derivative along the positive or negative characteristics. Because the arguments
of the derivatives in the last two forms of eq (24) are explicitly functions only of M‖, we
can subtract M⊥1.∇ from the characteristic derivative without effect. In other words, in
those expressions, we can interpret the derivative in the alternative version (valid only when
operating on functions only of M‖)

d

csdt

∣∣∣∣∣
±

= (M‖ ± 1)
∂

∂x
+ Mh

∂

∂y
(26)

Now we eliminate y-derivatives of ln n from the last form of the positive characteristic equa-
tion using the expression for the z drift velocity:

Mz = ρs
∂ ln n

∂y
= ρs

∂ ln n/n∞
∂y

(27)

to find

(M‖ + 1)
∂

∂x
ln n/n∞ = −Mz

(
1

2Ln

+
Mh

ρs

)
− 1

2

d

csdt

∣∣∣∣∣
+

δz

Ln

. (28)
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In the same way, we express the negative characteristic equation in terms of ln n/n∞, rein-
terpret the derivative as the form (26) and then we eliminate x- and y-derivatives of ln n/n∞
using eqs (28) and (27).

d

csdt

∣∣∣∣∣
−
M‖ =

d

csdt

∣∣∣∣∣
−

ln n/n∞ + Mz/Ln

=
M‖ − 1

M‖ + 1

[
−Mz

(
1

2Ln

+
Mh

ρs

)
− d

csdt

∣∣∣∣∣
+

δz

2Ln

]
+

MhMz

ρs

+
Mz

Ln

. (29)

For compactness we define d/dM‖(δz/2Ln) ≡ r; so that

d

csdt

∣∣∣∣∣
+

δz

2Ln

=
d

csdt

∣∣∣∣∣
+

M‖.
d

dM‖

δz

2Ln

= r
d

csdt

∣∣∣∣∣
+

M‖. (30)

Eliminate d
csdt

∣∣∣
+
M‖ between this expression and the M‖ form of eq (24) to obtain

d

csdt

∣∣∣∣∣
+

δz

2Ln

= −Mz

2Ln

r

1− r
. (31)

Substituting into eq (29) and eliminating Mz and the right hand side’s d
csdt

∣∣∣
−
M‖ using the

identity

r =
d

csdt

∣∣∣∣∣
−

δz

2Ln

/
d

csdt

∣∣∣∣∣
−
M‖ =

Mz

2Ln

/
d

csdt

∣∣∣∣∣
−
M‖ , (32)

we arrive at the following quadratic equation for r

1 =
r

M‖ + 1

[
M‖ + 3 +

r

1− r
(M‖ − 1) + 4LnMh/ρs

]
. (33)

We solve this equation, using the simplifying notation

u0 ≡ 2LnMh/ρs , u ≡ M‖ + u0 , (34)

to find
r = (1/4)[u + 2±

√
u2 + 4u0] . (35)

Then we can integrate to obtain the z-displacement

δz

Ln

= 2
∫

rdM‖ =
1

4

[
u2 + 4u∓

{
u
√

u2 + 4u0 + 4|u0| ln
(
±u +

√
u2 + 4u0

)}
/2
]u
u∞

, (36)

where the upper or lower sign is to be chosen when u0 is positive or negative respectively.
This solution is real only if 1/uo > −1/4, which is equivalent to the requirement that the ion
diamagnetic drift magnitude |Mni| be less than the E ∧ B drift magnitude |ME|. Positive
u0 corresponds to Mni in the opposite direction to ME. For negative uo the two drifts have
the same polarity.

12
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Figure 4: Solutions for the z-displacement normalized to the density scale-length (a) or the
Larmor radius (b), for the full allowed range of u0 = 2MhLn/ρs. It is assumed that M‖∞ is
zero, but the curve shapes are the same regardless of the starting value of M‖.

In Fig 4 are plotted the solutions for δz as a function of M‖ for the full range of allowable
u0. Whether normalized by Ln or by ρ/Mh, these results show that the displacement, while
substantial, is bounded. Moreover the curves are quite close to being mirror-symmetric
about the line M‖ = −1.

The value of δz together with the negative characteristic integration, eq (22) provide the
complete solution for ln(n/n∞) which is a function only of M‖. The characteristic equations
can be considered to be

d

csdt

∣∣∣∣∣
±
(ln n/n∞ ±M‖) =

Mz

Ln

, (37)

in which the characteristic derivatives can be taken as eq (26), that is, lying in a z = const
plane. The characteristics are now curved, and cannot be constructed directly from the
geometry, as was possible in the absence of diamagnetic drift. But this does not matter
for the purposes of obtaining the flux to the probe. The boundary condition at the plasma
edge is, as before, that provided the boundary is convex, the positive characteristic must be
tangential to the surface; that is, M‖ + 1 = Mh cot θ.

In practice, the perpendicular velocity is generally deduced from Mach probe measure-
ments effectively by comparing values of the ion current density for faces having equal and
opposite values of cos θ; that is, having the same angle to the magnetic field, but pointing
upstream or downstream with respect to the perpendicular flow. Although δz changes the
value of ln n and thus affects the ion flux density, if δz is of exactly even parity in M‖ + 1
and hence in cot θ, it will contribute nothing to the ratio of the ion fluxes on which the
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Figure 5: Schematic illustration of shape of positive characterstics in the x-y plane. In (a)
Ln is positive corresponding to diamagnetic drift opposing E∧B drift, and the displacement
δl being down the density gradient. In (b) Ln is negative.

measurement is based. For Ln →∞ (zero diamagnetic drift) and MhLn = 0 (zero net drift)
δz is indeed exactly of even parity. The maximum value of the odd-parity part of δz/Ln is
approximately 0.02 for |M‖ + 1| < 0.6 for all u0 (and for u0 = 2MyLn/ρs > 3 it is consid-
erably smaller). Thus the contribution of the δz term to Mach probe velocity measurement
is typically less than 2%, which is for practical purposes negligible. The magnitude of δz is
sufficiently great, however, that it would be inadvisable to attempt to deduce the perpendic-
ular flow without taking advantage of its approximate parity. In other words, a Mach-probe
measurement really must be based on electrodes with equal and opposite values of cot θ, and
not, for example, on comparing positive cot θ with cot θ = 0.

It is, in effect, the δz variation that causes the positive characteristics to have curvature.
This curvature has magnitude approximately 1/Ln. When considering whether or not a
probe surface is convex, this curvature has to be accounted for. Schematic representations
of the positive characteristic shapes are illustrated in Fig 5, for an object with two plane
faces. When the curvature is towards such a face, it is concave, and the plasma flows into the
probe with a negative parallel velocity greater than 1−My cot θ. This concavity is avoided
in general if the probe has a convex curvature that is greater than 1/Ln. The characteristics
curve either away from or towards the line x = const. depending on whether Ln is positive
or negative. (My is taken always positive.)

To summarize, then, the ion flux per unit perpendicular area from the plasma to a
convex surface in the presence of combined (colinear) E∧B and density-gradient diamagnetic
external drifts can be written precisely as eq (15):

Γ‖ = ncs = n∞(z∞)cs exp[−1− (M‖∞ −Mh cot θ)], (38)

but with
Mh = ME + Mni (39)
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and
n∞(z∞) = n∞(z − δz) = n∞(z) exp(−δz/Ln). (40)

Because of its near even parity in M‖ + 1, the δz term can generally be ignored for the
purposes of M⊥ determination.

4 Effects from presheath displacement

The expressions obtained so far are for the flux leaving the plasma region where the drift
expressions hold. Between that region and the probe surface lie the magnetic presheath, of
order a Larmor radius thick, which we assume is small compared with the probe, and the
Debye sheath, of order 4 Debye lengths thick, which we shall ignore altogether. The dynamics
in the magnetic presheath are not ignorable. The flux to the probe itself is different from the
flux from the plasma into the magnetic presheath when diamagnetic drifts are important.

4.1 Magnetic presheath displacement calculation

In the magnetic presheath, the electric field normal to the surface is strong enough that
E⊥/B is of order the sound speed. The normal gradients of the resulting drift give rise to
non-negligible convective derivative (i.e. polarization drift) terms. Indeed, it is those terms
that permit the ion fluid trajectory to acquire sufficient cross-field velocity to satisfy the
Bohm condition at the Debye-sheath edge. We assume on the magnetic presheath scale
the probe surface can be approximated as planar and the gradients can be considered all
to be normal to it. Let the direction of the normal (outward from the plasma) to the
probe surface be k̂. Define sin α = −k̂.B/B and the unit vector l̂ = B ∧ k̂/B cos α in the
direction perpendicular to B and k̂. Define the third unit vector by ĵ = k̂ ∧ l̂. See figure
6. Denote vector components in the respective directions by subscripts. Then the (normal)
k̂-component of the momentum equation (2) is

mv.∇vk = −Ze∇kφ− (1/n)∇kp + Zev.(B ∧ k̂) (41)

we eliminate the potential gradient using eq (16), and density gradient using the continuity
equation (1) in the form nvk = const., so that ∇k ln n = −∇k ln vk, to obtain

vlΩi cos α = (−c2
s/vk + vk)∇kvk . (42)

We wish to calculate the total displacement, δl in the l̂-direction, experienced by the ion
fluid traversing the magnetic presheath. This is simply the time integral of eq (42):

δlΩi cos α =
∫

(−c2
s/vk + vk)∇kvkdt =

∫
(1− c2

s/v
2
k)dvk = [vk + c2

s/vk] , (43)

(recognizing that vkdvk/dxk = dvk/dt). The limits of the integral are vk/cs = Γk/ncs ≡ S at
the magnetic presheath outer edge (where Γk is the normal flux density) and vk/cs = 1 at
its inner edge, entering the Debye sheath (whose thickness we ignore). Therefore

δl = ρs[2− S − 1/S]/ cos α = −ρs
[1− S]2

S cos α
. (44)
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Figure 6: Illustration of the coordinates referred to the field and drift directions (x, y, z) and
the unit vectors referred to the probe surface directions (̂j, k̂, l̂).

Thus, for small incidence angle of the magnetic field (S small) a rather large displacement
(δl ∼ ρs/S) along the magnetic presheath occurs. This displacement has been noted and
roughly estimated [18] in previous discussions of magnetic presheath structure. Its signifi-
cance is that ions exit the magnetic presheath (and are collected by the probe) a tangential
distance δl from where they entered it. If there is a tangential gradient ∇lΓk of the normal
flux-density Γk entering the magnetic presheath at position xl, then the flux-density to the
probe will be not Γk(xl) but Γk(xl − δl) = Γk(xl) exp[−δl∇l ln(Γk)] (choosing consistently
with our ln n assumption, uniformity of ∇ ln Γk when surface curvature is ignored). This
alteration of the flux-density is precisely the phenomenon that Cohen and Ryutov [19] cal-
culated in the small-α limit. In their Eulerian viewpoint, the alteration is attributable to
divergence of the tangential flux in the magnetic presheath. From the present Lagrangean
viewpoint, it arises from the integrated convective derivative. We can demonstrate this by
evaluation. Identifying ∇ ln Γk = ∇ ln n∞ and using the definitions of S and l̂ we find

δl∇l ln Γk = − [1− S]2

S cos α
ρsl̂.∇ ln Γk = − [1− S]2

S cos2 α cs

Ti + ZTe

ZeB2
(∇ ln n∞ ∧B).k̂

=
[1− S]2

S cos2 α cs

(vni − vne).k̂ =
[1− S]2k̂y

S cos2 α
(Mni −Mne) (45)

Cohen and Ryutov’s calculation assuming small S and α gave this expression with the
geometric term [1−S]2k̂y/ cos2 α equal to 1, yielding a δl∇lΓk equal to the difference between
the ion and electron diamagnetic normal flux densities. Now we evaluate the total flux
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density to the probe using eq (38), which yields S = sin α, and recognizing that when the
orientation of k̂ perpendicular to B is defined by setting k̂z = sin β, it immediately follows
that k̂x = − cos β sin θ, k̂y = cos β cos θ and sin α = cos β sin θ. We obtain

Γk(xl − δl) = ncs sin α exp
{
−
[
1− sin α

1 + sin α

]
(Mni −Mne) cot θ

}
. (46)

The ion flux to the probe surface per unit perpendicular area is then

Γ‖p = n∞cs exp
{
−1−M‖∞ + Mh cot θ −

[
1− sin α

1 + sin α

]
(Mni −Mne) cot θ

}
. (47)

The logarithm of ratio of the flux for positive and negative cos θ is

ln(Γ+/Γ−) = −δz+ − δz−
Ln

+ 2Mh cot θ − 2
1− sin α

1 + sin α
(Mni −Mne) cot θ . (48)

Ignoring the δz term, this becomes

ln(Γ+/Γ−)

2 cot θ
= ME +

Mni2 sin α + Mne(1− sin α)

1 + sin α
. (49)

Thus, in addition to ME, the velocity combination measured by the Mach probe ratio is
an interpolation between the ion and electron diamagnetic velocities (which of course have
opposite sign), dependent upon the angle α between the probe face and the field. Normally
in practice an intermediate value of θ (not too small but not too close to π/2) must be used,
which generally means an intermediate value of α.

4.2 Probe curvature and finite facet size

The displacement in the magnetic presheath also gives rise to a flux correction when the
probe surface has curvature. The flux at any point on an electrode is characteristic of the
flux into the magnetic presheath at a position −δl away. If the surface is curved, then
the angles at that position will be different, giving rise to a different flux. But also, the
displacement may have a divergence, which gives rise to flux enhancement even if the flux
into the magnetic presheath were uniform.

We note that the displacement strictly contains a component δj, along the direction

ĵ ≡ k̂ ∧ l̂, which for small α is mostly along B, and is of approximate magnitude ρs/ sin α,
similar to δl. This displacement δj can be calculated in the form of a closed integral expression
by solving the magnetic presheath equations using the techniques of references [22, 4]. We
ignore it, here and in the previous section, because it is mostly motion along the magnetic
field, which can be considered to be accounted for by surface projection along the field,
and because both the projection and any additional cross-field motion (in the k̂-direction)
that makes δj different from the pure field-line projection, make flux contributions that are
symmetric: of even parity under reversals of ky and hence of cos θ. In other words, there
is a small correction to the total flux density from δj, which can be pictured as arising
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from the fact that the probe collects ions from a cross-field area that is larger than its solid
cross-section by a margin of width approximately ρs. But that correction does not affect the
deduced Mach-numbers, because they are based on ratios of collection fluxes from surfaces
with opposite ky, which are equally perturbed by even-parity terms.

The perpendicular flux-density perturbation arising from δl along l̂ has contributions
δl∂n/∂xl = δlnMh∂ cot θ/∂xl and from the convective derivative of the perpendicular area
element, which can be written (differentially) ∆A/A = ∇s(δl̂l) = δl∇s .̂l + l̂.∇sδl, where ∇s

denotes the two-dimensional gradient (∂/∂y, ∂/∂z) in the perpendicular coordinates, but
evaluated along the probe surface (not at constant x). Thus the total correction arising from
surface curvature is

−∆Γ‖/Γ‖ = Mhδl̂l.∇s cot θ + δl∇s .̂l + l̂.∇sδl . (50)

In this equation the first term has even parity with respect to ky-reversal and therefore does
not contribute to flow-measurement bias. The last two have odd parity and do contribute.
Their order of magnitude is δl/Rc where Rc is the typical radius of curvature of the sur-
face. (Note that this is a real physical effect, not the elementary mathematical integration
discussed by Pelemann et al[23].)
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θ2

E ∧B
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x
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End

E ∧B

δll̂ δll̂

Figure 7: Illustration of the opposite directions of magnetic presheath displacement (δl̂l)
for opposite values of cos θ. The electric field is towards the probe and δl̂l is in the E ∧ B
direction. When the displacement is towards the stalk, as it is for facet 1 but not facet 2, a
depleted region exists at the probe end. (In this figure “forward” is up and “backward” is
down.)

18



A related, but more intuitive and probably more relevant correction comes from edges
of plane facets. Most Mach probes have electrodes at or near their ends [12, 9, 13, 24] The
direction δl̂l associated with the surfaces points forward, beyond the probe end, on one side
and backward towards the probe stalk on the other, as illustrated in Fig 7. The surface
for which it points backward collects essentially zero flux for a distance ≈ δl from the end,
because of the magnetic presheath displacement; then it collects the full flux from then on.
The surface for which δl̂l points forward collects full flux at its end. The electrode will
collect full flux throughout its area, provided that it is embedded in a surface of constant
angle which extends a distance ≈ δl past the (backward) edge of the electrode. Therefore the
likely effect (dependent on the detailed electrode placement) of δl is to induce a depleted flux
region on just the forward edge of just the electrode for which δl̂l is backward. An appropriate
estimate of the odd-parity part of the resulting flux change is

∆Γ‖/Γ‖ ≈ δl l̂z/2h̄ = −ρs(1− S)2 cos β

2h̄S cos α
≈ −ρs

(1− sin α)2

2h̄ cos α sin θ
, (51)

approximating S as sin α to lowest order in M⊥, and denoting the average z-extent of the
electrode as h̄.

Since in a perpendicular Mach-probe measurement Mh is estimated from the expression

Mh| cot θ| = (1/2) ln[Γ‖+/Γ‖−] , (52)

(where subscript ± refers to the sign of cos θ) the perturbation ∆Mh to the deduced Mh is
related to the odd-parity perturbation to flux, ∆Γ‖, by

∆Mh = | tan θ|∆Γ‖/Γ‖ ≈ −
ρs

2h̄

(1− sin α)2

cos α cos θ
. (53)

There is therefore an intrinsic bias of order ρs/2h̄ in such a Mach-probe measurement. Its
direction is such that if the gradient of plasma pressure is in the forward direction of the
probe, in other words the probe is introduced from the “outside” of the plasma where pressure
is low (as is generally the case), then the spurious apparent drift is in the same direction as
the ion-diamagnetic drift. This end-effect can in principle be avoided if the electrode does
not sample the plasma at the end of the facets, but instead approaches the end no closer
than a z-distance of approximately ρs(1− S)2 cos β/(S cos α).

5 Temperature gradient drifts

Diamagnetic drifts might also arise from temperature gradients, which have so far been ex-
cluded. A physically justifiable approach for electron temperature gradients simply regards
Te as constant along the field, but having an externally imposed gradient in the z-direction.
A similar mathematical ansatz will be applied to Ti but with less clear physical justifica-
tion. The equations of continuity and parallel momentum (6) are unchanged by allowing
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z-variation of temperature. However, when they are rearranged into characteristic form one
obtains

(v.∇± cs∇)[ln n/n∞ ± v‖/cs] = ±v‖(v.∇⊥)(1/cs) ≡ ±(v‖/cs)(−vz/Lc) . (54)

Here cs is a function of z because of temperature gradients. Its gradient has been written as
dcs/dz = cs/Lc. It gives rise to the inhomogeneous term on the RHS which is the same order
as the LHS terms near the boundary of the unperturbed region. It cannot therefore simply
be ignored because of ordering. However, its effects are to change the value of ln n/n∞−v‖/cs

along the negative characteristic, which is what determines the flux at the boundary. This
change can be calculated, and proves to be usually ignorable, as we now show. We assume
that the value of this combination can be expressed as a function only of M‖:

ln n/n∞ −M‖ = g(M‖) (55)

and solve for g using the same approach as we used for density gradients. To keep the algebra
in check we assume no external density gradients for this calculation. Initially we consider
only the cs-variation. In outline, the calculation is as follows.

The positive characteristic equation gives

−M‖vz/Lc =
d

dt

∣∣∣∣∣
+

(2M‖ + g) =
d

dt

∣∣∣∣∣
+

(2 ln n/n∞ − g) (56)

We define dg/dM‖ = 2q so that d
dt

∣∣∣
±
g = 2q d

dt

∣∣∣
±
M‖ and eliminate M‖ derivatives from the

characteristics to obtain

d

dt

∣∣∣∣∣
−
g = −M‖

(−vz

Lc

)
,

d

dt

∣∣∣∣∣
+

g = M‖

(−vz

Lc

)
q

1 + q
. (57)

We eliminate partial x-derivatives of ln n/n∞ between the positive and negative character-
istics, and partial y-derivatives using the z-velocity expression (27). Substituting for the
characteristic derivatives of g and dividing the resultant through by (−vz/2Lc) we arrive at

M‖ − 1

M‖ + 1

[
M‖

q

1 + q
+

2vhLc

ρs

+ M‖

]
− 2vhLc

csρs

+ M‖

(
2 +

1

q

)
= 0 . (58)

This quadratic equation for q can be solved to obtain

1

2

dg

dM‖
= q =

−(2M2
‖ + M‖ − u1)±

√
(1− 2u1)M2

‖ + u1M‖ + u2
1

4M2
‖ − 2u1

(59)

where u1 ≡ 2vhLc/csρs.
Provided M‖∞ and u1 are indeed constant, this is a consistent solution. In view of the

variation of cs and hence ρs with z, it is clear that the constancy of u1 requires cs(z) to
satisfy a simple differential equation, whose solution gives the required cs(z). This is not as
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Figure 8: Solutions for the quantity g + M‖∞ = ln n/n∞ −M‖ + M‖∞ accounting for per-
pendicular gradients of sound-speed when external temperature gradients contribute to the
drift.

simple a profile as the linear ln n∞ profile for the density-gradient. But we are interested in
a local region on the gradient, where it is acceptable to choose the precise form of cs(z) to
satisfy the consistency condition without substantially changing the problem, in-so-far as a
local expansion of cs is allowable.

Equation (59) can be integrated analytically, but the resulting expression would be ex-
tremely long and cumbersome, so it is not given here. Instead, numerical integrations are
illustrated in Fig 8. The case M‖∞ = 0.2 is shown, to emphasize the applicability of the
solution shapes to all M‖∞. The solution becomes imaginary for some relevant negative
values of M‖ when 0 < u1

<∼ 10, illustrated by the u1 = 3 curve. Provided such parameters
are avoided, it can be seen that the values and especially the odd parity (in M‖ + 1) part of
g + M‖∞ are small.

A second modification of the governing equations, arising from temperature gradients, is
that additional terms are present in the drift velocity eq (3). Ion temperature gradients are
easy to treat because they can be expressed as a uniform term like ∇φ∞, but Te gradients
introduce a new type of term (c.f. 23). The total drift velocity is:

v⊥ = −
[
ln(n/n∞)∇

(
Te

e

)
+∇

(
φ∞ +

Ti

Ze

)
+

Ti

Ze
∇ ln n∞ +

mc2
s

Ze
∇ ln n/n∞

]
∧ B

B2
. (60)

We can still discard the final (∇ ln n/n∞) term as an M⊥1 giving no advection because
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M⊥1.∇ ln n/n∞ = 0. The rest should be regarded as vh, having no z-component. The first
term is the new one, so far not treated. It is non-uniform; but a function of ln n/n∞ and
hence, within the solution schemes we have developed, a function of M‖. The vh variation
can be incorporated into the scheme above, except that the consistency condition upon the
cs profile becomes that u1 = vh2Lc/csρs which varies with vh, must be a function only of M‖.
Assuming an appropriate cs shape is chosen, eq (59) still applies, and could still be integrated
provided that u1(M‖) were known. Plainly, provided that u1 stays within acceptable ranges
during the integration, curves that bear resemblance to those of Fig (8) will be obtained.
Generally then, the arguments that g + M‖∞ can usually be ignored will remain as valid as
before, provided u1 stays within the range of their validity.

The boundary condition at the plasma edge is still that the positive characteristic be
tangent to the probe surface, that is (eq 14) M‖ = Mh cot θ − 1, but with the following
definition:

Mh = −
[
ln(n/n∞)∇

(
Te

e

)
+∇

(
Ti

Ze
+ φ∞

)
+

Ti

Ze
∇ ln n∞

]
∧ B

B2cs

(61)

= − ln(n/n∞)MTe + MTi + ME + Mni , (62)

where MTe and MTi are the (external) diamagnetic drift due to temperature gradient of the
electrons and ions. We can then substitute into eq (55) to eliminate M‖ and obtain after
rearrangement:

ln n/n∞ =
−1 + g + (MTi + ME + Mni) cot θ

1 + MTe cot θ
, (63)

in which, for the purposes of perpendicular velocity measurement, we can take g ≈ −M‖∞.
To first order in the perpendicular velocities this can be written

ln n/n∞ ≈ −1−M‖∞ + [(1 + M‖∞)MTe + MTi + ME + Mni] cot θ , (64)

showing that the effect of the electron temperature-gradient drift can be amplified or atten-
uated, compared with the other drifts, depending upon the parallel external velocity M‖∞.

Finally we must account for the temperature gradients in the correction arising from
magnetic presheath displacement. We can ignore the next order corrections to δl arising
from approximations in its derivation. But we must account for the fact that since δl ∝ cs,
a transverse derivative of cs gives rise to transverse divergence which alters the flux density
as it traverses the magnetic presheath. The change in area A arising from this effect is
∆A/A = δl̂l.∇ ln cs. This gives rise to a change in ln Γ of −δl̂l.∇ ln cs. In addition, the
displacement gives rise to a convective difference between the flux to the probe and that
entering the presheath that, since Γ ∝ ncs can be expressed as

∆ ln(ncs) = −δl̂l.(∇ ln n +∇ ln cs) (65)

adding these two effects gives the total magnetic presheath difference:

∆ ln Γk = −δl̂l.(∇ ln n + 2∇ ln cs) = −δl̂l.(∇ ln n +∇ ln(ZTe + Ti)) (66)
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Applying the transformations of eq (45), we see that our result is the same as before except
that the total diamagnetic difference velocity MD ≡ MDi−MDe = (Mni+MTi)−(Mne+MTe)
is involved rather than just the density-gradient part calculated before.

The final expression for flux per unit perpendicular area to the probe is thus

Γ‖p
ncs

= exp

{
−1 + g + (MTi + ME + Mni) cot θ

1 + MTe cot θ
−
[
1− sin α

1 + sin α

]
(MDi −MDe) cot θ

}
, (67)

or, to first order in perpendicular velocities, and approximating g,

ln

{
Γ‖p
ncs

}
= −1−M‖∞ +

[
(1 + M‖∞)MTe + MDi + ME −

(
1− sin α

1 + sin α

)
MD

]
cot θ, (68)

where α is the angle between the probe surface and the magnetic field (in 3-dimensions),
and θ is the angle within the plane containing field and external drift. All drift velocities
here refer to the external, unperturbed plasma.

6 Discussion

The complete solution of the drift equations that has been obtained here is highly appropriate
when the E ∧ B drift dominates. Then the positive characteristics are straight and the full
solution in the plasma region can readily be constructed. Notice that the parallel length of
the presheath (i.e. the perturbed plasma region) is approximately the transverse size of the
probe a (say) times (M‖ + 1)/M⊥. If the perpendicular Mach number is not very small, this
length ∼ a/M⊥ is likely substantially shorter than that from the standard diffusive estimate:
a2cs/D. Certainly it can easily be shorter than the mean-free-path for electron-ion Coulomb
collisions, which is required for the ignoring of friction inherent in our treatment. In such
a situation taking the electron temperature to be invariant along the field is completely
natural. It is not so natural to make that approximation for the ions. However, it is
known from other calculations [25, 9] that the isothermal approximation gives results quite
close to those that arise from more physically plausible approximations. In any case, the
standard widely-accepted formulas are based upon isothermal-ion calculations. In addition to
providing rigorous analytical justification, regardless of probe geometry, for formulas that are
practically the same as those arising from a diffusive treatment, the present treatment helps
to resolve another conceptual problem of long standing. It is that probes are often smaller
than the typical transverse size of the turbulence that is responsible for transport in the
regions of plasma in which they are used. In other words, transport, for example in tokamak
edges and scrape-off-layers, is actually known to be dominated by fluctuating cross-field
flows that in many situations have eddies larger than the probes. In such situations, using a
heuristic approximation that cross-field flux is expressible through a diffusion coefficient, as
prior treatments have done, is questionable. The present treatment, regarded as a short-time
snap-shot of a situation that is fluctuating, is more appropriate. Fortunately the result is
the same, although with much sharper physical justification.
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The drift-approximation is unproblematic for E ∧ B drifts, because there is nothing to
prevent the probe being bigger than the Larmor radius while the drift Mach number is of
order unity. This is not so for diamagnetic drifts. The diamagnetic Mach number is of
order MD ∼ ρs/L (where L is the pressure scale-length). Consequently if MD ∼ 1, there
is no separation of scales between the Larmor radius and the gradient scale-length. It is
then impossible to choose a probe size that is both bigger than the Larmor radius (in order
to justify the drift approximation) and smaller than the gradient scale-length (to justify a
local approximation of the drifts). This is an inherent difficulty that underlies the need
in the calculations to choose a specific shape of the plasma profiles. Only if MD is small
does a local approximation to the flow make sense. Therefore, the usefulness of the present
calculation is increasingly compromised as MD approaches unity. A calculation that avoids
the drift-approximation is then really needed. It seems unlikely that an analytic solution
like the present one will be forthcoming.

In summary, complete solutions of the problem of ion collection by an arbitrary-shaped
object have been obtained in the drift approximation (ignoring the polarization drift). The
normalized flux density (67), (68) is a function only of the orientation of the surface, provided
the object is convex. The precise meaning of “convex” here is that no positive characteristic
that originates elsewhere on the object should pass through the point of interest. A transverse
Mach probe using a variety of electrode orientations measures the E ∧ B drift plus this
specified combination of both ion and electron diamagnetic drifts. Its ideal calibration has
been derived, and possible problems arising from finite size identified and quantified.
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