10 research outputs found

    Deep observation of the NGC 1275 region with MAGIC: Search of diffuse γ -ray emission from cosmic rays in the Perseus cluster

    Get PDF
    Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E 100 GeV) for a total of 253 h from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6° from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2stat ± 0.2syst between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be 1-2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B0, that depend on the CR distribution. For α = 2.2, B0 5-8 μG, which is below the ~25 μG inferred from Faraday rotation measurements, whereas for α 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength

    MAGIC observations of the diffuse γ -ray emission in the vicinity of the Galactic center

    Get PDF
    Aims. In the presence of a sufficient amount of target material, γ-rays can be used as a tracer in the search for sources of Galactic cosmic rays (CRs). Here we present deep observations of the Galactic center (GC) region with the MAGIC telescopes and use them to infer the underlying CR distribution and to study the alleged PeV proton accelerator at the center of our Galaxy.Methods. We used data from ≈100 h observations of the GC region conducted with the MAGIC telescopes over five years (from 2012 to 2017). Those were collected at high zenith angles (58−70 deg), leading to a larger energy threshold, but also an increased effective collection area compared to low zenith observations. Using recently developed software tools, we derived the instrument response and background models required for extracting the diffuse emission in the region. We used existing measurements of the gas distribution in the GC region to derive the underlying distribution of CRs. We present a discussion of the associated biases and limitations of such an approach.Results. We obtain a significant detection for all four model components used to fit our data (Sgr A*, “Arc”, G0.9+0.1, and an extended component for the Galactic Ridge). We observe no significant difference between the γ-ray spectra of the immediate GC surroundings, which we model as a point source (Sgr A*) and the Galactic Ridge. The latter can be described as a power-law with index 2 and an exponential cut-off at around 20 TeV with the significance of the cut-off being only 2σ. The derived cosmic-ray profile hints to a peak at the GC position and with a measured profile index of 1.2 ± 0.3 is consistent with the 1/r radial distance scaling law, which supports the hypothesis of a CR accelerator at the GC. We argue that the measurements of this profile are presently limited by our knowledge of the gas distribution in the GC vicinity.</div

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    Drell-Yan lepton pairs produced in the process pp→â.,"+â.,"-+X through an intermediate γ∗/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2θefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9-10 fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2θefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2θW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2θW=0.22324±0.00033 or equivalently, MW=80.367±0.017 GeV/c2

    Cross-calibration and combined analysis of the CTA-LST prototype and the MAGIC telescopes

    Get PDF
    The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory that is expected to reach one order of magnitude better sensitivity than that of current telescope arrays. The Large-Sized Telescopes (LSTs) have an essential role in extending the energy range down to 20 GeV. The prototype LST (LST-1) proposed for CTA was built in La Palma, the northern site of CTA, in 2018. LST-1 is currently in its commissioning phase and moving towards scientific observations. The LST-1 camera consists of 1855 photomultiplier tubes (PMTs) which are sensitive to Cherenkov light. PMT signals are recorded as waveforms sampled at 1 GHz rate with Domino Ring Sampler version 4 (DRS4) chips. Fast sampling is essential to achieve a low energy threshold by minimizing the integration of background light from the night sky. Absolute charge calibration can be performed by the so-called F-factor method, which allows calibration constants to be monitored even during observations. A calibration pipeline of the camera readout has been developed as part of the LST analysis chain. The pipeline performs DRS4 pedestal and timing corrections, as well as the extraction and calibration of charge and time of pulses for subsequent higher-level analysis. The performance of each calibration step is examined, and especially charge and time resolution of the camera readout are evaluated and compared to CTA requirements. We report on the current status of the calibration pipeline, including the performance of each step through to signal reconstruction, and the consistency with Monte Carlo simulation

    Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-Ray and VHE Observations during an Extreme Flaring Activity in 2013 April

    Get PDF
    240siWe report on a multiband variability and correlation study of the TeV blazar Mrk 421 during an exceptional flaring activity observed from 2013 April 11 to 19. The study uses, among others, data from GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), Swift, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Large Area Telescope, Very Energetic Radiation Imaging Telescope Array System (VERITAS), and Major Atmospheric Gamma Imaging Cherenkov (MAGIC). The large blazar activity and the 43 hr of simultaneous NuSTAR and MAGIC/VERITAS observations permitted variability studies on 15 minute time bins over three X-ray bands (3-7 keV, 7-30 keV, and 30-80 keV) and three very-high-energy (VHE; >0.1 TeV) gamma-ray bands (0.2-0.4 TeV, 0.4-0.8 TeV, and >0.8 TeV). We detected substantial flux variations on multi-hour and sub-hour timescales in all of the X-ray and VHE gamma-ray bands. The characteristics of the sub-hour flux variations are essentially energy independent, while the multi-hour flux variations can have a strong dependence on the energy of the X-rays and the VHE gamma-rays. The three VHE bands and the three X-ray bands are positively correlated with no time lag, but the strength and characteristics of the correlation change substantially over time and across energy bands. Our findings favor multi-zone scenarios for explaining the achromatic/chromatic variability of the fast/slow components of the light curves, as well as the changes in the flux-flux correlation on day-long timescales. We interpret these results within a magnetic reconnection scenario, where the multi-hour flux variations are dominated by the combined emission from various plasmoids of different sizes and velocities, while the sub-hour flux variations are dominated by the emission from a single small plasmoid moving across the magnetic reconnection layer.nonemixedmagic Collaboration; Other Groups And Collaborators; Acciari V.A.; Ansoldi S.; Antonelli L.A.; Engels A.A.; Baack D.; Babic A.; Banerjee B.; De Almeida U.B.; Barrio J.A.; Gonzalez J.B.; Bednarek W.; Bellizzi L.K.; Bernardini E.; Berti A.; Besenrieder J.; Bhattacharyya W.; Bigongiari C.; Biland A.; Blanch O.; Bonnoli G.; Bosnjak Z.; Busetto G.; Carosi R.; Ceribella G.; Cerruti M.; Chai Y.; Chilingarian A.; Cikota S.; Colak S.M.; Colin U.; Colombo E.; Contreras J.L.; Cortina J.; Covino S.; D'Elia V.; Vela P.D.; Dazzi F.; Angelis A.D.; Lotto B.D.; Puppo F.D.; Delfino M.; Delgado J.; Depaoli D.; Pierro F.D.; Venere L.D.; Souto Espiñeira E.D.; Prester D.D.; Donini A.; Dorner D.; Doro M.; Elsaesser D.; Ramazani V.F.; Fattorini A.; Ferrara G.; Foffano L.; Fonseca M.V.; Font L.; Fruck C.; Fukami S.; Lopez R.J.G.; Garczarczyk M.; Gasparyan S.; Gaug M.; Giglietto N.; Giordano F.; Gliwny P.; Godinovic N.; Green D.; Hadasch D.; Hahn A.; Hassan T.; Herrera J.; Hoang J.; Hrupec D.; Hutten M.; Inada T.; Inoue S.; Ishio K.; Iwamura Y.; Jouvin L.; Kajiwara Y.; Kerszberg D.; Kobayashi Y.; Kubo H.; Kushida J.; Lamastra A.; Lelas D.; Leone F.; Lindfors E.; Lombardi S.; Longo F.; Lopez M.; Lopez-Coto R.; Lopez-Oramas A.; Loporchio S.; De Oliveira Fraga B.M.; Maggio C.; Majumdar P.; Makariev M.; Mallamaci M.; Maneva G.; Manganaro M.; Mannheim K.; Maraschi L.; Mariotti M.; Martinez M.; Mazin D.; Mender S.; Micanovic S.; Miceli D.; Miener T.; Minev M.; Miranda J.M.; Mirzoyan R.; Molina E.; Moralejo A.; Morcuende D.; Moreno V.; Moretti E.; Munar-Adrover P.; Neustroev V.; Nigro C.; Nilsson K.; Ninci D.; Nishijima K.; Noda K.; Nogues L.; Nozaki S.; Ohtani Y.; Oka T.; Otero-Santos J.; Palatiello M.; Paneque D.; Paoletti R.; Paredes J.M.; Pavletic L.; Peñil P.; Peresano M.; Persic M.; Moroni P.G.P.; Prandini E.; Puljak I.; Rhode W.; Ribo M.; Rico J.; Righi C.; Rugliancich A.; Saha L.; Sahakyan N.; Saito T.; Sakurai S.; Satalecka K.; Schleicher B.; Schmidt K.; Schweizer T.; Sitarek J.; Snidaric I.; Sobczynska D.; Spolon A.; Stamerra A.; Strom D.; Strzys M.; Suda Y.; Suric T.; Takahashi M.; Tavecchio F.; Temnikov P.; Terzic T.; Teshima M.; Torres-Alba N.; Tosti L.; Scherpenberg J.V.; Vanzo G.; Acosta M.V.; Ventura S.; Verguilov V.; Vigorito C.F.; Vitale V.; Vovk I.; Will M.; Zaric D.; Petropoulou M.; Finke J.; D'Ammando F.; Balokovic M.; Madejski G.; Mori K.; Puccetti S.; Leto C.; Perri M.; Verrecchia F.; Villata M.; Raiteri C.M.; Agudo I.; Bachev R.; Berdyugin A.; Blinov D.A.; Chanishvili R.; Chen W.P.; Chigladze R.; Damljanovic G.; Eswaraiah C.; Grishina T.S.; Ibryamov S.; Jordan B.; Jorstad S.G.; Joshi M.; Kopatskaya E.N.; Kurtanidze O.M.; Kurtanidze S.O.; Larionova E.G.; Larionova L.V.; Larionov V.M.; Latev G.; Lin H.C.; Marscher A.P.; Mokrushina A.A.; Morozova D.A.; Nikolashvili M.G.; Semkov E.; Smith P.S.; Strigachev A.; Troitskaya Y.V.; Troitsky I.S.; Vince O.; Barnes J.; Guver T.; Moody J.W.; Sadun A.C.; Hovatta T.; Richards J.L.; Max-Moerbeck W.; Readhead A.C.S.; Lahteenmaki A.; Tornikoski M.; Tammi J.; Ramakrishnan V.; Reinthal R.Magic, Collaboration; Other Groups And, Collaborators; Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Engels, A. A.; Baack, D.; Babic, A.; Banerjee, B.; De Almeida, U. B.; Barrio, J. A.; Gonzalez, J. B.; Bednarek, W.; Bellizzi, L. K.; Bernardini, E.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bonnoli, G.; Bosnjak, Z.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colin, U.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Elia, V.; Vela, P. D.; Dazzi, F.; Angelis, A. D.; Lotto, B. D.; Puppo, F. D.; Delfino, M.; Delgado, J.; Depaoli, D.; Pierro, F. D.; Venere, L. D.; Souto Espiñeira, E. D.; Prester, D. D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Ramazani, V. F.; Fattorini, A.; Ferrara, G.; Foffano, L.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; Lopez, R. J. G.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinovic, N.; Green, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Herrera, J.; Hoang, J.; Hrupec, D.; Hutten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jouvin, L.; Kajiwara, Y.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Loporchio, S.; De Oliveira Fraga, B. M.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martinez, M.; Mazin, D.; Mender, S.; Micanovic, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Munar-Adrover, P.; Neustroev, V.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogues, L.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletic, L.; Peñil, P.; Peresano, M.; Persic, M.; Moroni, P. G. P.; Prandini, E.; Puljak, I.; Rhode, W.; Ribo, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Suric, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzic, T.; Teshima, M.; Torres-Alba, N.; Tosti, L.; Scherpenberg, J. V.; Vanzo, G.; Acosta, M. V.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Zaric, D.; Petropoulou, M.; Finke, J.; D'Ammando, F.; Balokovic, M.; Madejski, G.; Mori, K.; Puccetti, S.; Leto, C.; Perri, M.; Verrecchia, F.; Villata, M.; Raiteri, C. M.; Agudo, I.; Bachev, R.; Berdyugin, A.; Blinov, D. A.; Chanishvili, R.; Chen, W. P.; Chigladze, R.; Damljanovic, G.; Eswaraiah, C.; Grishina, T. S.; Ibryamov, S.; Jordan, B.; Jorstad, S. G.; Joshi, M.; Kopatskaya, E. N.; Kurtanidze, O. M.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Latev, G.; Lin, H. C.; Marscher, A. P.; Mokrushina, A. A.; Morozova, D. A.; Nikolashvili, M. G.; Semkov, E.; Smith, P. S.; Strigachev, A.; Troitskaya, Y. V.; Troitsky, I. S.; Vince, O.; Barnes, J.; Guver, T.; Moody, J. W.; Sadun, A. C.; Hovatta, T.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A. C. S.; Lahteenmaki, A.; Tornikoski, M.; Tammi, J.; Ramakrishnan, V.; Reinthal, R
    corecore