4,013 research outputs found

    Comparative effect of lunar fines and terrestrtrial ash on the growth of a blue-green alga and germinating radish seeds

    Get PDF
    Although it is understood that photosynthetic organisms will be required as components of a closed ecological life support system (CELSS) for a manned lunar based, a basic problem is to identify organisms best capable of utilizing lunar regolith materials. Also, there is need to determine what nutrient supplements have to be added to lunar soils, and at what levels in order to promote high bio-mass production

    An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations

    Get PDF
    Measurements of tropospheric ozone (O3) between 30°N and 70°N show springtime maxima at remote locations. The contribution of seasonal changes in stratosphere–troposphere exchange (STE) to these maxima was investigated using measurements from the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) campaign and the beryllium-7 (7Be) distribution from a calculation driven by fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Comparison with TOPSE measurements revealed that upper tropospheric model-calculated 7Be mixing ratios were reasonable (a change from previous calculations) but that lower tropospheric mixing ratios were too low most likely due to an overestimation of scavenging. Temporal fluctuations were well captured although their amplitudes were often underestimated. Analysis of O3measurements indicated that O3 mixing ratios increased by 5–10% month−1 for ξ \u3c 300 K (the underworld) and by 10–15% month−1 for ξ \u3e 300 K (the tropospheric middleworld). 7Be mixing ratios decreased with time for ξ \u3c 290 K and increased with time for ξ \u3e 300 K. Model-calculated middleworld increases of 7Be were a factor of 2 less than measured increases. 7Be with a stratospheric source (strat-7Be) increased by 4.6–8.8% month−1 along TOPSE flight paths within the tropospheric middleworld. Increases in strat-7Be were not seen along TOPSE flight paths in the underworld. Assuming changes in tropospheric O3 with a stratospheric source are the same as changes in strat-7Be and that 50% of O3 in the region of interest is produced in the stratosphere, changes in STE explain 20–60% of O3 increases in the tropospheric middleworld and less than 33% of O3 increases in the underworld

    Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer

    Get PDF
    We use 7Be, with HNO3 and O3, to identify air masses sampled from the NCAR C-130 during TOPSE that retained clear evidence of stratospheric influence. A total of 43 such air masses, spread fairly evenly across the February to May sampling period, and 40°N–86°N latitude range, were encountered. South of 55°N, nearly all clear stratospheric influence was restricted to altitudes above 6 km. At higher latitudes stratospherically influenced air masses were encountered as low as 2 km. Approximately 12% of all TOPSE sampling time at altitudes above 2 km was spent in stratospherically impacted air, above 6 km this increased to more than half of the time. Because it is not certain how much of this stratospherically influenced air irreversibly injected mass (and chemical compounds) into the troposphere, we estimate the stratospheric fraction of O3 in high latitude TOPSE samples based on a linear relationship to7Be and compare it to in situ O3. This analysis indicates that the stratospheric source can account for a dominant fraction (\u3e85%) of in situ O3 throughout TOPSE, but that the stratospheric contribution was nearly constant through the 4 month campaign. In February and March the 7Be based estimates of stratospheric O3 account for 10–15% more O3 than was measured, but by April and May there is up to about 10% more O3 than expected from the stratospheric source. This trend suggests that a seasonal transition from O3 depletion to photochemical production in the high latitude North American troposphere is the major cause of the springtime increase in O3

    Upper limit for the D2H+ ortho-to-para ratio in the prestellar core 16293E (CHESS)

    Full text link
    The H3+ ion plays a key role in the chemistry of dense interstellar gas clouds where stars and planets are forming. The low temperatures and high extinctions of such clouds make direct observations of H3+ impossible, but lead to large abundances of H2D+ and D2H+, which are very useful probes of the early stages of star and planet formation. The ground-state rotational ortho-D2H+ 111-000 transition at 1476.6 GHz in the prestellar core 16293E has been searched for with the Herschel/HIFI instrument, within the CHESS (Chemical HErschel Surveys of Star forming regions) Key Program. The line has not been detected at the 21 mK km/s level (3 sigma integrated line intensity). We used the ortho-H2D+ 110-111 transition and para-D2H+ 110-101 transition detected in this source to determine an upper limit on the ortho-to-para D2H+ ratio as well as the para-D2H+/ortho-H2D+ ratio from a non-LTE analysis. The comparison between our chemical modeling and the observations suggests that the CO depletion must be high (larger than 100), with a density between 5e5 and 1e6 cm-3. Also the upper limit on the ortho-D2H+ line is consistent with a low gas temperature (~ 11 K) with a ortho-to-para ratio of 6 to 9, i.e. 2 to 3 times higher than the value estimated from the chemical modeling, making it impossible to detect this high frequency transition with the present state of the art receivers.Comment: Accepted in A&

    Dental Hygiene Education About Patients with Special Needs: A Survey of U.S. Programs

    Full text link
    The objective of this study was to explore how dental hygiene programs in the United States educate their students about treating patients with special needs. Data were collected from 102 U.S. dental hygiene programs (response rate=49 percent) with a web‐based survey. Nearly all programs (98 percent) reported that they present this material in lectures. However, only 42 percent of the programs required students to gain clinical experiences with patients with special needs. Most programs covered the treatment of patients with physical/sensory impairments such as hearing impairments (93.1 percent), psychopathologies (89.2 percent), and adult onset neurological disorders (89.2 percent). Outcome assessments were usually done in a written exam (97.1 percent), while objective structured clinical examinations (OSCEs) (9.8 percent) and standardized patient experiences (4.9 percent) were less frequently used. Respondents identified “curriculum overload” as the biggest challenge to addressing special patient needs. Nevertheless, 29.4 percent of the respondents indicated that they support an increase in clinical experiences for students to give them increased opportunities to work with patients with special needs. Recent changes in accreditation standards require graduating dental hygiene students to be competent in assessing the treatment needs of special needs patients. Based on the program directors’ responses, recommendations can be made to increase the opportunities for students to have clinical experiences with patients with special needs and to address the needs of patients with special needs more comprehensively in dental hygiene curricula.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153598/1/jddj002203372008729tb04575x.pd

    Induced surface fluxes: A new framework for attributing Arctic sea ice volume balance biases to specific model errors

    Get PDF
    This is the final version. Available on open access from EGU via the DOI in this recordCode availability. The code used to create the fields of induced surface flux bias is written in Python and is provided as a Supplement (directory “ISF”). The code used to create Figs. 1–9, as well as Fig. B1, is also provided (directory “Figures”). In addition, the routines used to estimate errors in the ISF analysis are provided (directory “Analysis”). Finally, the code used to create Table 1 is provided (directory “Tables”). A set of auxiliary routines used by most of the above are also provided (directory “Library”). Most routines make use of the open-source Iris library, and several make use of the open-source Cartopy library.Data availability. Monthly mean ice thickness, ice fraction, snow thickness and surface radiation, as well as daily surface temperature and surface radiation, for the historical simulations of HadGEM2-ES, are available from the CMIP5 archive at https://cmip.llnl.gov/cmip5/data_portal.html (last access: February 2018). NSIDC ice concentration and melt onset data can be downloaded at http://nsidc.org/data/NSIDC-0051 (last access: May 2017; Cavalieri et al., 1996) and http://nsidc.org/data/NSIDC-0105 (last access: March 2016; Anderson et al., 2011) respectively. PIOMAS ice thickness data can be downloaded at http://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data/ (last access: March 2016; Zhang and Rothrock, 2003). ERAI surface radiation data can be downloaded at http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last access: September 2016; Dee et al., 2011). ISCCP-FD surface radiation data are available at https://isccp.giss.nasa.gov/projects/browse_fc.html (last access: October 2015; Zhang et al., 2004). CERES surface radiation data are available at https://climatedataguide.ucar.edu/climate-data/ceres-ebaf. (last access: August 2014; Loeb et al., 2009)A new framework is presented for analysing the proximate causes of model Arctic sea ice biases, demonstrated with the CMIP5 model HadGEM2-ES (Hadley Centre Global Environment Model version 2 - Earth System). In this framework the Arctic sea ice volume is treated as a consequence of the integrated surface energy balance, via the volume balance. A simple model allows the local dependence of the surface flux on specific model variables to be described as a function of time and space. When these are combined with reference datasets, it is possible to estimate the surface flux bias induced by the model bias in each variable. The method allows the role of the surface albedo and ice thickness-growth feedbacks in sea ice volume balance biases to be quantified along with the roles of model bias in variables not directly related to the sea ice volume. It shows biases in the HadGEM2-ES sea ice volume simulation to be due to a bias in spring surface melt onset date, partly countered by a bias in winter downwelling longwave radiation. The framework is applicable in principle to any model and has the potential to greatly improve understanding of the reasons for ensemble spread in the modelled sea ice state. A secondary finding is that observational uncertainty is the largest cause of uncertainty in the induced surface flux bias calculation.Joint UK BEIS/Defra Met Office Hadley Centre Climate ProgrammeEuropean Union Horizon 2020Natural Environment Research Council (NERC

    A statistical comparison of the AMIE derived and DMSP‐SSIES observed high‐latitude ionospheric electric field

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95462/1/jgra18089.pd

    Coupled evolution of BrOx-ClOx-HOx-NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

    Get PDF
    Extensive chemical characterization of ozone (O3) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March–May 2000 enables analysis of the coupled chemical evolution of bromine (BrOx), chlorine (ClOx), hydrogen oxide (HOx) and nitrogen oxide (NOx) radicals during these events. We project the TOPSE observations onto an O3 chemical coordinate to construct a chronology of radical chemistry during O3 depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClOxchemistry is only active during the early stage of O3 depletion (O3 \u3e 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O3 decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O3 depletion and we explain both trends on the basis of the reaction of CH2O with Br. Observed NOx concentrations decline abruptly in the early stages of O3 depletion and recover as O3 drops below 10 ppbv. We attribute the initial decline to BrNO3 hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO3 formation as O3 drops. Under halogen-free conditions we find that HNO4 heterogeneous chemistry could provide a major NOx sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere
    • 

    corecore