521 research outputs found
The bend stiffness of S-DNA
We formulate and solve a two-state model for the elasticity of nicked,
double-stranded DNA that borrows features from both the Worm Like Chain and the
Bragg--Zimm model. Our model is computationally simple, and gives an excellent
fit to recent experimental data through the entire overstretching transition.
The fit gives the first value for the bending stiffness of the overstretched
state as about 10 nm*kbt, a value quite different from either B-form or
single-stranded DNA.Comment: 7 pages, 1 figur
Detrital zircon records of Late Cretaceous syn-rift sedimentary sequences of New Caledonia: an Australian provenance questioned
International audienceThe Late Cretaceous clastic coastal sediments of New Caledonia are contemporaneous with the latest stages of the eastern Australian marginal rifting. As such, they record the erosion of basement terranes located on uplifted and tilted blocks and a contemporaneous volcanic activity. Detrital zircon populations contain two major components, the younger of which is Early Cretaceous, and the older Early Paleozoic and Precambrian. Following recent advances in the knowledge of detrital zircon content of basement terranes, and at variance with previous interpretations, that hypothesised a possible direct Australian provenance for Precambrian zircons, the detrital zircon record of these syn-rift sediments allows a local recycled provenance to be established. In consequence, this new evidence confirms that New Caledonia was already isolated from Australia as early as Coniacian time (ca. 89-85 Ma) a fact consistent with the development of faunal and floral endemism at that period. The prominent abundance of Early Cretaceous detrital zircons also establishes the importance of a previously unrecorded Early Cretaceous magmatism in the area
Torsional Directed Walks, Entropic Elasticity, and DNA Twist Stiffness
DNA and other biopolymers differ from classical polymers due to their
torsional stiffness. This property changes the statistical character of their
conformations under tension from a classical random walk to a problem we call
the `torsional directed walk'. Motivated by a recent experiment on single
lambda-DNA molecules [Strick et al., Science 271 (1996) 1835], we formulate the
torsional directed walk problem and solve it analytically in the appropriate
force regime. Our technique affords a direct physical determination of the
microscopic twist stiffness C and twist-stretch coupling D relevant for DNA
functionality. The theory quantitatively fits existing experimental data for
relative extension as a function of overtwist over a wide range of applied
force; fitting to the experimental data yields the numerical values C=120nm and
D=50nm. Future experiments will refine these values. We also predict that the
phenomenon of reduction of effective twist stiffness by bend fluctuations
should be testable in future single-molecule experiments, and we give its
analytic form.Comment: Plain TeX, harvmac, epsf; postscript available at
http://dept.physics.upenn.edu/~nelson/index.shtm
Recommended from our members
Evidence for the Universal Scaling Behaviour of a Freely Relaxing DNA Molecule
Relaxation measurements on a fluorescently labelled free DNA molecule after stretching by a Poiseuille flow in a capillary vessel reveal universal scaling features: at intermediate times the scaling exponent of the decay law for the molecule length as a function of time is found to be 0.51 +/- 0.05. This law is in agreement with the prediction of the Brochard-Wyart "stem and flower" model for the relaxation of a stretched polymer chain.Molecular and Cellular BiologyPhysic
Discrete elastic model for stretching-induced flagellar polymorphs
Force-induced reversible transformations between coiled and normal polymorphs
of bacterial flagella have been observed in recent optical-tweezer experiment.
We introduce a discrete elastic rod model with two competing helical states
governed by a fluctuating spin-like variable that represents the underlying
conformational states of flagellin monomers. Using hybrid Brownian dynamics
Monte-Carlo simulations, we show that a helix undergoes shape transitions
dominated by domain wall nucleation and motion in response to externally
applied uniaxial tension. A scaling argument for the critical force is
presented in good agreement with experimental and simulation results.
Stretching rate-dependent elasticity including a buckling instability are
found, also consistent with the experiment
Recommended from our members
Systematic characterization of maturation time of fluorescent proteins in living cells
Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells
Probing complex RNA structures by mechanical force
RNA secondary structures of increasing complexity are probed combining single
molecule stretching experiments and stochastic unfolding/refolding simulations.
We find that force-induced unfolding pathways cannot usually be interpretated
by solely invoking successive openings of native helices. Indeed, typical
force-extension responses of complex RNA molecules are largely shaped by
stretching-induced, long-lived intermediates including non-native helices. This
is first shown for a set of generic structural motifs found in larger RNA
structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA,
which exhibits a surprisingly well-structured and reproducible unfolding
pathway under mechanical stretching. Using out-of-equilibrium stochastic
simulations, we demonstrate that these experimental results reflect the slow
relaxation of RNA structural rearrangements. Hence, micromanipulations of
single RNA molecules probe both their native structures and long-lived
intermediates, so-called "kinetic traps", thereby capturing -at the single
molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure
- âŠ