545 research outputs found

    Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6

    Full text link
    Magnetic dc susceptibility (χ\chi) and electron spin resonance (ESR) measurements in the paramagnetic regime, are presented. We found a Curie-Weiss (CW) behavior for χ\chi(T) with a ferromagnetic Θ=446(5)\Theta = 446(5) K and μeff=4.72(9)μB/f.u.\mu_{eff} = 4.72(9) \mu_{B}/f.u., this being lower than that expected for either Fe3+(5.9μB)Fe^{3+}(5.9\mu_{B}) or Fe2+(4.9μB)Fe^{2+}(4.9\mu_{B}) ions. The ESR g-factor g=2.01(2)g = 2.01(2), is associated with Fe3+Fe^{3+}. We obtained an excellent description of the experiments in terms of two interacting sublattices: the localized Fe3+Fe^{3+} (3d53d^{5}) cores and the delocalized electrons. The coupled equations were solved in a mean-field approximation, assuming for the itinerant electrons a bare susceptibility independent on TT. We obtained χe0=3.7\chi_{e}^{0} = 3.7 10−410^{-4} emu/mol. We show that the reduction of μeff\mu_{eff} for Fe3+Fe^{3+} arises from the strong antiferromagnetic (AFM) interaction between the two sublattices. At variance with classical ferrimagnets, we found that Θ\Theta is ferromagnetic. Within the same model, we show that the ESR spectrum can be described by Bloch-Hasegawa type equations. Bottleneck is evidenced by the absence of a gg-shift. Surprisingly, as observed in CMR manganites, no narrowing effects of the ESR linewidth is detected in spite of the presence of the strong magnetic coupling. These results provide evidence that the magnetic order in Sr2FeMoO6Sr_{2}FeMoO_{6} does not originates in superexchange interactions, but from a novel mechanism recently proposed for double perovskites

    Cohesive energies of cubic III-V semiconductors

    Full text link
    Cohesive energies for twelve cubic III-V semiconductors with zincblende structure have been determined using an ab-initio scheme. Correlation contributions, in particular, have been evaluated using the coupled-cluster approach with single and double excitations (CCSD). This was done by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock data, we recover about 92 \% of the experimental cohesive energies.Comment: 16 pages, 1 figure, late

    Study of Magnetic Properties of A_2B^'NbO_6 (A=Ba,Sr, (BaSr): and B^'=Fe and Mn) double perovskites

    Full text link
    We have studied the magnetic properties of Ba_2FeNbO_6 and Ba_2MnNbO_6. it is seen that Ba_2FeNbO_6 is an antiferromagnet with a weak ferromagnetic behaviour at 5K while Ba_2MnNbO_6 shows two magnetic transitions one at 45 K and the other at 12K. Electron spin resonance (ESR) measurements at room temperature show that the Mn compound does not show any Jahn-Teller distortion. It is also seen that the Neel temperature of the A_2FeNbO_6 (A=Ba,Sr, BaSr) compounds do not vary significantly. However variations in the average A-site ionic radius influence the formation of short range correlations that persist above T_N.Comment: 10 oages, 5 figures, MMM, to appear in J.Appl.Phy

    The Effect of the Environment on alpha-Al_2O_3 (0001) Surface Structures

    Full text link
    We report that calculating the Gibbs free energy of the alpha-Al_2O_3 (0001) surfaces in equilibrium with a realistic environment containing both oxygen and hydrogen species is essential for obtaining theoretical predictions consistent with experimental observations. Using density-functional theory we find that even under conditions of high oxygen partial pressure, the metal terminated surface is surprisingly stable. An oxygen terminated alpha-Al_2O_3 (0001) surface becomes stable only if hydrogen is present on the surface. In addition, including hydrogen on the surface resolves discrepancies between previous theoretical work and experimental results with respect to the magnitude and direction of surface relaxations.Comment: 4 pages including 2 figures. Submitted to Phys. Rev. Lett. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    1.3-W Ripple-Free Superluminescent Diode

    Get PDF

    Elastin-like-recombinamers multilayered nanofibrous scaffolds for cardiovascular applications

    Get PDF
    Producción CientíficaCoronary angioplasty is the most widely used technique for removing atherosclerotic plaques in blood vessels. The regeneration of the damaged intima layer after this treatment is still one of the major challenges in the field of cardiovascular tissue engineering. Different polymers have been used in scaffold manufacturing in order to improve tissue regeneration. Elastin-mimetic polymers are a new class of molecules that have been synthesized and used to obtain small diameter fibers with specific morphological characteristics. Elastin-like polymers produced by recombinant techniques and called elastin-like recombinamers (ELRs) are particularly promising due to their high degree of functionalization. Generally speaking, ELRs can show more complex molecular designs and a tighter control of their sequence than other chemically synthetized polymers Rodriguez Cabello et al (2009 Polymer 50 5159–69, 2011 Nanomedicine 6 111–22). For the fabrication of small diameter fibers, different ELRs were dissolved in 2,2,2-fluoroethanol (TFE). Dynamic light scattering was used to identify the transition temperature and get a deep characterization of the transition behavior of the recombinamers. In this work, we describe the use of electrospinning technique for the manufacturing of an elastic fibrous scaffold; the obtained fibers were characterized and their cytocompatibility was tested in vitro. A thorough study of the influence of voltage, flow rate and distance was carried out in order to determine the appropriate parameters to obtain fibrous mats without beads and defects. Moreover, using a rotating mandrel, we fabricated a tubular scaffold in which ELRs containing different cell adhesion sequences (mainly REDV and RGD) were collected. The stability of the scaffold was improved by using genipin as a crosslinking agent. Genipin-ELRs crosslinked scaffolds show a good stability and fiber morphology. Human umbilical vein endothelial cells were used to assess the in vitro bioactivity of the cell adhesion domains within the backbone of the ELRs.2018-08-0

    Optical signature of erythrocytes by light scattering in microfluidic flows

    Get PDF
    A camera-based light scattering approach coupled with a viscoelasticity-induced cell migration technique has been used to characterize the morphological properties of erythrocytes in microfluidic flows. We have obtained the light scattering profiles (LSPs) of individual living cells in microfluidic flows over a wide angular range and matched them with scattering simulations to characterize their morphological properties. The viscoelasticity-induced 3D cell alignment in microfluidic flows has been investigated by bright-field and holographic microscopy tracking, where the latter technique has been used to obtain precise cell alignment profiles in-flow. Such information allows variable cell probability control in microfluidic flows at very low viscoelastic polymer concentrations, obtaining cell measurements that are almost physiological. Our results confirm the possibility of precise, label-free analysis of individual living erythrocytes in microfluidic flows

    Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3

    Full text link
    We report on structural, magnetic and Electron Spin Resonance (ESR) investigations in the manganite system LaMn_{1-x}Cr_{x}O_{3} (x<=0.5). Upon Cr-doping we observe a reduction of the Jahn-Teller distortion yielding less distorted orthorhombic structures. A transition from the Jahn-Teller distorted O' to the pseudocubic O phase occurs between 0.3<x<0.4. A clear connection between this transition and the doping dependence of the magnetic and ESR properties has been observed. The effective moments determined by ESR seem reduced with respect to the spin-only value of both Mn^{3+} and Cr^{3+} ions

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure

    Nanosized Sodium-Doped Lanthanum Manganites: Role of the Synthetic Route on their Physical Properties

    Full text link
    In this paper we present the results of the synthesis and characterisation of nanocrystalline La1-xNaxMnO3+delta samples. Two synthetic routes were employed: polyacrylamide-based sol-gel and propellant synthesis. Pure, single phase materials were obtained with grain size around 35 nm for the sol-gel samples and around 55 nm for the propellant ones, which moreover present a more broaden grain size distribution. For both series a superparamagnetic behaviour was evidenced by means of magnetisation and EPR measurements with peculiar features ascribable to the different grain sizes and morphology. Preliminary magnetoresistivity measurements show enhanced low-field (< 1 T) magnetoresistance values which suggest an interesting applicative use of these manganites.Comment: 31 Pages 10 Figures to appear in Chem. Mate
    • …
    corecore