271 research outputs found

    Positron Emission Tomography/Computed Tomography with Gallium-68-labeled Prostate-specific Membrane Antigen Detects Relapse After Vascular-targeted Photodynamic Therapy in a Prostate Cancer Model

    Get PDF
    BACKGROUND: Evaluating the efficacy of focal therapy for prostate cancer is limited by current approaches and may be improved with biological imaging techniques. OBJECTIVE: We assessed whether positron emission tomography/computed tomography with gallium-68-labeled prostate-specific membrane antigen (Ga-PSMA PET/CT) can be used to predict relapse after vascular-targeted photodynamic therapy (VTP). DESIGN, SETTING, AND PARTICIPANTS: A total of 1×10 LNCaP cells were grafted subcutaneously in the flanks of 6-8-wk-old SCID mice. Of 24 mice with measurable tumors 6 wk after tumor implantation, 20 were treated with VTP (150mW/cm) to ablate the tumors. Blood prostate-specific antigen (PSA) levels were assessed, and ⁶⁞Ga-PSMA PET/CT images were performed 1 d before VTP and 1 and 4 wk after. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Local tumor relapse was evaluated by histology, and tumors were analyzed by prostate-specific membrane antigen (PSMA) and PSA immunohistochemistry. T tests and Kruskal-Wallis tests were used to determine significance. RESULTS AND LIMITATIONS: Four weeks after VTP, 11 (65%) mice had complete responses and six (35%) had tumor relapses confirmed by histology (hematoxylin and eosin, and PSMA immunohistochemistry). All mice with local relapse had positive Ga-PSMA PET/CT findings 4 wk after VTP; all complete responders did not. One week after VTP, the relapse detection sensitivity of Ga-PSMA PET/CT was 75%, whereas the sensitivity of PSA was only 33%. Compared with controls, relapsed tumors had a three-fold reduction in the number of cells with strong PSA staining by immunohistochemistry (1.5% vs 4.5%; p=0.01). CONCLUSIONS: In a preclinical prostate cancer model, we show that Ga-PSMA PET/CT can identify and predict relapse earlier than blood PSA level. These findings support further testing in clinical trials. PATIENT SUMMARY: Positron emission tomography/computed tomography with gallium-68-labeled prostate-specific membrane antigen may be used to follow and evaluate treatment outcomes in men who receive focal therapy for prostate cancer

    Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    Full text link
    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different than the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur

    Chronic lymphocytic leukaemia: the role of T cells in a B cell disease

    Get PDF
    Chronic lymphocytic leukaemia (CLL) has long been thought to be an immunosuppressive disease and abnormalities in T‐cell subset distribution and function have been observed in many studies. However, the role of T cells (if any) in disease progression remains unclear and has not been directly studied. This has changed with the advent of new therapies, such as chimeric antigen receptor‐T cells, which actively use retargeted patient‐derived T cells as “living drugs” for CLL. However complete responses are relatively low (~26%) and recent studies have suggested the differentiation status of patient T cells before therapy may influence efficacy. Non‐chemotherapeutic drugs, such as idelalisib and ibrutinib, also have an impact on T cell populations in CLL patients. This review will highlight what is known about T cells in CLL during disease progression and after treatment, and discuss the prospects of using T cells as predictive biomarkers for immune status and response to therapy

    Loss of PRDM1/BLIMP-1 function contributes to poor prognosis of activated B-cell-like diffuse large B-cell lymphoma

    Get PDF
    PRDM1/BLIMP-1, a master regulator of plasma-cell differentiation, is frequently inactivated in activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) patients. Little is known about its genetic aberrations and relevant clinical implications. A large series of patients with de novo DLBCL was effectively evaluated for PRDM1/BLIMP-1 deletion, mutation, and protein expression. BLIMP-1 expression was frequently associated with the ABC phenotype and plasmablastic morphologic subtype of DLBCL, yet 63% of the ABC-DLBCL patients were negative for BLIMP-1 protein expression. In these patients, loss of BLIMP-1 was associated with Myc overexpression and decreased expression of p53 pathway molecules. In addition, homozygous PRDM1 deletions and PRDM1 mutations within exons 1 and 2, which encode for domains crucial for transcriptional repression, were found to show a poor prognostic impact in patients with ABC-DLBCL but not in those with germinal center B-cell-like DLBCL (GCB-DLBCL). Gene expression profiling revealed that loss of PRDM1/BLIMP-1 expression correlated with a decreased plasma-cell differentiation signature and upregulation of genes involved in B-cell receptor signaling and tumor-cell proliferation. In conclusion, these results provide novel clinical and biological insight into the tumor-suppressive role of PRDM1/BLIMP-1 in ABC-DLBCL patients and suggest that loss of PRDM1/BLIMP-1 function contributes to the overall poor prognosis of ABC-DLBCL patients

    Constraint Solving on Bounded String Variables

    Full text link
    Abstract Constraints on strings of unknown length occur in a wide variety of real-world problems, such as test case generation, program analysis, model checking, and web security. We describe a set of con-straints sufficient to model many standard benchmark problems from these fields. For strings of an unknown length bounded by an integer, we describe propagators for these constraints. Finally, we provide an experi-mental comparison between a state-of-the-art dedicated string solver, CP approaches utilising fixed-length string solving, and our implementation extending an off-the-shelf CP solver.

    Clinical Significance of PTEN Deletion, Mutation, and Loss of PTEN Expression in De Novo Diffuse Large B-Cell Lymphoma

    Get PDF
    PTEN loss has been associated with poorer prognosis in many solid tumors. However, such investigation in lymphomas is limited. In this study, PTEN cytoplasmic and nuclear expression, PTEN gene deletion, and PTEN mutations were evaluated in two independent cohorts of diffuse large B-cell lymphoma (DLBCL). Cytoplasmic PTEN expression was found in approximately 67% of total 747 DLBCL cases, more frequently in the activated B-cell-like subtype. Nuclear PTEN expression was less frequent and at lower levels, which significantly correlated with higher PTEN mRNA expression. Remarkably, loss of PTEN protein expression was associated with poorer survival only in DLBCL with AKT hyperactivation. In contrast, high PTEN expression was associated with Myc expression and poorer survival in cases without abnormal AKT activation. Genetic and epigenetic mechanisms for loss of PTEN expression were investigated. PTEN deletions (mostly heterozygous) were detected in 11.3% of DLBCL, and showed opposite prognostic effects in patients with AKT hyperactivation and in MYC rearranged DLBCL patients. PTEN mutations, detected in 10.6% of patients, were associated with upregulation of genes involved in central nervous system function, metabolism, and AKT/mTOR signaling regulation. Loss of PTEN cytoplasmic expression was also associated with TP53 mutations, higher PTEN-targeting microRNA expression, and lower PD-L1 expression. Remarkably, low PTEN mRNA expression was associated with down-regulation of a group of genes involved in immune responses and B-cell development/differentiation, and poorer survival in DLBCL independent of AKT activation. Collectively, multi-levels of PTEN abnormalities and dysregulation may play important roles in PTEN expression and loss, and that loss of PTEN tumor-suppressor function contributes to the poor survival of DLBCL patients with AKT hyperactivation

    MKPV (aka MuCPV) and related chapparvoviruses are nephro-tropic and encode novel accessory proteins p15 and NS2

    Full text link
    Abstract Mouse kidney parvovirus (MKPV) is a member of the provisional Chapparvovirus genus that causes renal disease in immune-compromised mice, with a disease course reminiscent of polyomavirus-associated nephropathy in immune-suppressed kidney transplant patients. Here we map four MKPV transcripts, created by alternative splicing, to a common transcription initiation region, and use mass spectrometry to identify “p10” and “p15” as novel chapparvovirus accessory proteins produced in MKPV-infected kidneys. p15 and a splicing-dependent putative accessory protein NS2 are conserved in all near-complete tetrapod chapparvovirus genomes currently available (from mammals, birds and a reptile). In contrast, p10 may be encoded only by viruses with >60% amino acid identity to MKPV. We show that MKPV is kidney-tropic and that the bat chapparvovirus DrPV-1 and a non-human primate chapparvovirus, CKPV, are also found in the kidneys of their hosts. We propose, therefore, that chapparvoviruses with >60% VP1 amino acid identity to MKPV be classified into a genus dubbed Nephroparvovirus , which is consistent with nomenclature for the genus Erythroparvovirus

    Search for inelastic dark matter-nucleus scattering with the PICO-60 CF3_{3}I and C3_{3}F8_{8} bubble chambers

    Full text link
    PICO bubble chambers have exceptional sensitivity to inelastic dark matter-nucleus interactions due to a combination of their extended nuclear recoil energy detection window from a few keV to OO(100 keV) or more and the use of iodine as a heavy target. Inelastic dark matter-nucleus scattering is interesting for studying the properties of dark matter, where many theoretical scenarios have been developed. This study reports the results of a search for dark matter inelastic scattering with the PICO-60 bubble chambers. The analysis reported here comprises physics runs from PICO-60 bubble chambers using CF3_{3}I and C3_{3}F8_{8}. The CF3_{3}I run consisted of 36.8 kg of CF3_{3}I reaching an exposure of 3415 kg-day operating at thermodynamic thresholds between 7 and 20 keV. The C3_{3}F8_{8} runs consisted of 52 kg of C3_{3}F8_{8} reaching exposures of 1404 kg-day and 1167 kg-day running at thermodynamic thresholds of 2.45 keV and 3.29 keV, respectively. The analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, assuming an inelastic interaction, considering that the PICO CF3_{3}I bubble chamber used iodine as the target material.Comment: 7 pages, 3 figure
    • 

    corecore