3,228 research outputs found

    Fission-induced plasmas

    Get PDF
    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results

    Studies of new media radiation induced laser

    Get PDF
    Various lasants were investigated especially, 2-iodohepafluoropropane (i-C3F7I) for the direct solar pumped lasers. Optical pumping of iodine laser was achieved using a small flashlamp. Using i-C3F7I as a laser gain medium, threshold inversion density, small signal gain, and laser performance at the elevated temperature were measured. The experimental results and analysis are presented. The iodine laser kinetics of the C3F7I and IBr system were numerically simulated. The concept of a direct solar-pumped laser amplifier using (i-C3F7I) as the laser material was evaluated and several kinetic coefficients for i-C3F7I laser system were reexamined. The results are discussed

    Calibration and Irradiation Study of the BGO Background Monitor for the BEAST II Experiment

    Full text link
    Beam commissioning of the SuperKEKB collider began in 2016. The Beam Exorcism for A STable experiment II (BEAST II) project is particularly designed to measure the beam backgrounds around the interaction point of the SuperKEKB collider for the Belle II experiment. We develop a system using bismuth germanium oxide (BGO) crystals with optical fibers connecting to a multianode photomultiplier tube (MAPMT) and a field-programmable gate array (FPGA) embedded readout board for monitoring the real-time beam backgrounds in BEAST II. The overall radiation sensitivity of this system is estimated to be (2.20±0.26)×10−12(2.20\pm0.26)\times10^{-12} Gy/ADU (analog-to-digital unit) with the standard 10 m fibers for transmission and the MAPMT operating at 700 V. Our γ\gamma-ray irradiation study of the BGO system shows that the exposure of BGO crystals to 60^{60}Co γ\gamma-ray doses of 1 krad has led to immediate light output reductions of 25--40%, and the light outputs further drop by 30--45% after the crystals receive doses of 2--4 krad. Our findings agree with those of the previous studies on the radiation hard (RH) BGO crystals grown by the low thermal gradient Czochralski (LTG Cz) technology. The absolute dose from the BGO system is also consistent with the simulation, and is estimated to be about 1.18 times the equivalent dose. These results prove that the BGO system is able to monitor the background dose rate in real time under extreme high radiation conditions. This study concludes that the BGO system is reliable for the beam background study in BEAST II

    Rapid Tunneling and Percolation in the Landscape

    Full text link
    Motivated by the possibility of a string landscape, we reexamine tunneling of a scalar field across single/multiple barriers. Recent investigations have suggested modifications to the usual picture of false vacuum decay that lead to efficient and rapid tunneling in the landscape when certain conditions are met. This can be due to stringy effects (e.g. tunneling via the DBI action), or by effects arising due to the presence of multiple vacua (e.g. resonance tunneling). In this paper we discuss both DBI tunneling and resonance tunneling. We provide a QFT treatment of resonance tunneling using the Schr\"odinger functional approach. We also show how DBI tunneling for supercritical barriers can naturally lead to conditions suitable for resonance tunneling. We argue using basic ideas from percolation theory that tunneling can be rapid in a landscape where a typical vacuum has multiple decay channels and discuss various cosmological implications. This rapidity vacuum decay can happen even if there are no resonance/DBI tunneling enhancements, solely due to the presence of a large number of decay channels. Finally, we consider various ways of circumventing a recent no-go theorem for resonance tunneling in quantum field theory.Comment: 47 pages, 16 figures. Acknowledgements adde

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Angular Dependence of X-ray Absorption Spectrum for Field-aligned Fe-based Superconductors

    Full text link
    Anisotropic Fe K-edge and As K-edge X-ray absorption near edge spectrum (XANES) measurements on superconducting (T_c = 52 K) (Sm_{0.95}La_{0.05})FeAs(O_{0.85}F_{0.15}) field-aligned microcrystalline powder are presented. The angular dependence of Fe pre-edge peak (dipole transition of Fe-1s electrons to Fe-3d/As-4p hybrid bands) relative to the tetragonal ab-plane of aligned powder indicates larger density of state (DOS) along the c-axis, and is consistent with the LDA band structure calculation. The anisotropic Fe K-edge spectra exhibit a chemical shift to lower energy compared to FeO which are closely related to the itinerant character of Fe^{2+}-3d^6 orbitals. The anisotropic As K-edge spectra are more or less the mirror images of Fe K-edge due to the symmetrical Fe-As hybridiztion in the FeAs layer. Angular dependence of As main peak (dipole transition of As-1s electrons to higher energy hybrid bands) was observed suggesting character of As-4d e_g orbitals.Comment: 4 pages, 6 figures, accepted 9/11/2009 Physical Review B (B15

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3
    • …
    corecore