4,336 research outputs found
Suzaku monitoring of the Wolf-Rayet binary WR 140 around periastron passage: An approach for quantifying the wind parameters
Suzaku observations of the Wolf-Rayet (W-R) binary WR 140 (WC7pd+O5.5fc) were made at four different times around periastron passage in 2009 January. The spectra changed in shape and flux with the phase. As periastron approached, the column density of the low-energy absorption increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense W-R wind. The spectra can be mostly fitted with two different components: a warm component with kBT = 0.3-0.6 keV and a dominant hot component with kBT ∼ 3 keV. The emission measure of the dominant, hot component is not inversely proportional to the distance between the two stars. This can be explained by the O star wind colliding before it has reached its terminal velocity, leading to a reduction in its wind momentum flux. At phases closer to periastron, we discovered a cool plasma component in a recombining phase, which is less absorbed. This component may be a relic of the wind-wind collision plasma, which was cooled down by radiation, and may represent a transitional stage in dust formation
Two-dimensional Superfluidity and Localization in the Hard-Core Boson Model: a Quantum Monte Carlo Study
Quantum Monte Carlo simulations are used to investigate the two-dimensional
superfluid properties of the hard-core boson model, which show a strong
dependence on particle density and disorder. We obtain further evidence that a
half-filled clean system becomes superfluid via a finite temperature
Kosterlitz-Thouless transition. The relationship between low temperature
superfluid density and particle density is symmetric and appears parabolic
about the half filling point. Disorder appears to break the superfluid phase up
into two distinct localized states, depending on the particle density. We find
that these results strongly correlate with the results of several experiments
on high- superconductors.Comment: 10 pages, 3 figures upon request, RevTeX version 3, (accepted for
Phys. Rev. B
Contemporary medical television and crisis in the NHS
This article maps the terrain of contemporary UK medical television, paying particular attention to Call the Midwife as its centrepiece, and situating it in contextual relation to the current crisis in the NHS. It provides a historical overview of UK and US medical television, illustrating how medical television today has been shaped by noteworthy antecedents. It argues that crisis rhetoric surrounding healthcare leading up to the passing of the Health and Social Care Act 2012 has been accompanied by a renaissance in medical television. And that issues, strands and clusters have emerged in forms, registers and modes with noticeable regularity, especially around the value of affective labour, the cultural politics of nostalgia and the neoliberalisation of healthcare
Causality Problem in a Holographic Dark Energy Model
In the model of holographic dark energy, there is a notorious problem of
circular reasoning between the introduction of future event horizon and the
accelerating expansion of the universe. We examine the problem after dividing
into two parts, the causality problem of the equation of motion and the
circular logic on the use of the future event horizon. We specify and isolate
the root of the problem from causal equation of motion as a boundary condition,
which can be determined from the initial data of the universe. We show that
there is no violation of causality if it is defined appropriately and the
circular logic problem can be reduced to an initial value problem.Comment: 5 page
Superfluidity vs Bose-Einstein condensation in a Bose gas with disorder
We investigate the phenomenon of Bose-Einstein condensation and superfluidity
in a Bose gas at zero temperature with disorder. By using the Diffusion
Monte-Carlo method we calculate the superfluid and the condensate fraction of
the system as a function of density and strength of disorder. In the regime of
weak disorder we find agreement with the analytical results obtained within the
Bogoliubov model. For strong disorder the system enters an unusual regime where
the superfluid fraction is smaller than the condensate fraction.Comment: 4 pages, 4 Postscript figure
YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus
The rotation states of small asteroids are affected by a net torque arising
from an anisotropic sunlight reflection and thermal radiation from the
asteroids' surfaces. On long timescales, this so-called YORP effect can change
asteroid spin directions and their rotation periods. We analyzed lightcurves of
four selected near-Earth asteroids with the aim of detecting secular changes in
their rotation rates that are caused by YORP. We use the lightcurve inversion
method to model the observed lightcurves and include the change in the rotation
rate as a free parameter of optimization. We
collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used
thermal infrared data from the WISE spacecraft and estimated their size and
thermal inertia. We also used the currently available optical and radar
astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We
detected a YORP acceleration of for asteroid Cacus. For
Toro, we have a tentative () detection of YORP from a significant
improvement of the lightcurve fit for a nonzero value of . For asteroid
Eger, we confirmed the previously published YORP detection with more data and
updated the YORP value to . We also updated the shape model of
asteroid Ra-Shalom and put an upper limit for the change of the rotation rate
to . Ra-Shalom has a greater than
Yarkovsky detection with a theoretical value consistent with observations
assuming its size and/or density is slightly larger than the nominally expected
values
The effect of disorder on the critical temperature of a dilute hard sphere gas
We have performed Path Integral Monte Carlo (PIMC) calculations to determine
the effect of quenched disorder on the superfluid density of a dilute 3D hard
sphere gas. The disorder was introduced by locating set of hard cylinders
randomly inside the simulation cell. Our results indicate that the disorder
leaves the superfluid critical temperature basically unchanged. Comparison to
experiments of helium in Vycor is made.Comment: 4 pages, 4 figure
Scalar ground-state observables in the random phase approximation
We calculate the ground-state expectation value of scalar observables in the
matrix formulation of the random phase approximation (RPA). Our expression,
derived using the quasiboson approximation, is a straightforward generalization
of the RPA correlation energy. We test the reliability of our expression by
comparing against full diagonalization in 0 h-bar omega shell-model spaces. In
general the RPA values are an improvement over mean-field (Hartree-Fock)
results, but are not always consistent with shell-model results. We also
consider exact symmetries broken in the mean-field state and whether or not
they are restored in RPA.Comment: 7 pages, 3 figure
- …