25,519 research outputs found
Recommended from our members
A quantum theoretical explanation for probability judgment errors
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction, disjunction, inverse, and conditional fallacies, as well as unpacking effects and partitioning effects. Quantum probability theory is a general and coherent theory based on a set of (von Neumann) axioms which relax some of the constraints underlying classic (Kolmogorov) probability theory. The quantum model is compared and contrasted with other competing explanations for these judgment errors including the representativeness heuristic, the averaging model, and a memory retrieval model for probability judgments. The quantum model also provides ways to extend Bayesian, fuzzy set, and fuzzy trace theories. We conclude that quantum information processing principles provide a viable and promising new way to understand human judgment and reasoning
Hybridized solid-state qubit in the charge-flux regime
Most superconducting qubits operate in a regime dominated by either the
electrical charge or the magnetic flux. Here we study an intermediate case: a
hybridized charge-flux qubit with a third Josephson junction (JJ) added into
the SQUID loop of the Cooper-pair box. This additional JJ allows the optimal
design of a low-decoherence qubit. Both charge and flux noises are
considered. Moreover, we show that an efficient quantum measurement of either
the current or the charge can be achieved by using different area sizes for the
third JJ.Comment: 7 pages, 5 figures. Phys. Rev. B, in pres
Exploring cloudy gas accretion as a source of interstellar turbulence in the outskirts of disks
High--resolution 2D--MHD numerical simulations have been carried out to
investigate the effects of continuing infall of clumpy gas in extended HI
galactic disks. Given a certain accretion rate, the response of the disk
depends on its surface gas density and temperature. For Galactic conditions at
a galactocentric distance of ~20 kpc, and for mass accretion rates consistent
with current empirical and theoretical determinations in the Milky Way, the
rain of compact high velocity clouds onto the disk can maintain transonic
turbulent motions in the warm phase (~2500 K) of HI. Hence, the HI line width
is expected to be ~6.5 km/s for a gas layer at 2500 K, if infall were the only
mechanism of driving turbulence. Some statistical properties of the resulting
forcing flow are shown in this Letter. The radial dependence of the gas
velocity dispersion is also discussed.Comment: 13 pages, 3 figures, accepted for publication in ApJ Letter
Scalable quantum computing with Josephson charge qubits
A goal of quantum information technology is to control the quantum state of a
system, including its preparation, manipulation, and measurement. However,
scalability to many qubits and controlled connectivity between any selected
qubits are two of the major stumbling blocks to achieve quantum computing (QC).
Here we propose an experimental method, using Josephson charge qubits, to
efficiently solve these two central problems. The proposed QC architecture is
scalable since any two charge qubits can be effectively coupled by an
experimentally accessible inductance. More importantly, we formulate an
efficient and realizable QC scheme that requires only one (instead of two or
more) two-bit operation to implement conditional gates.Comment: 4 pages, 2 figure
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
Cascading Quivers from Decaying D-branes
We use an argument analogous to that of Kachru, Pearson and Verlinde to argue
that cascades in L^{a,b,c} quiver gauge theories always preserve the form of
the quiver, and that all gauge groups drop at each step by the number M of
fractional branes. In particular, we demonstrate that an NS5-brane that sweeps
out the S^3 of the base of L^{a,b,c} destroys M D3-branes.Comment: 11 pages, 1 figure; v2: references adde
- …