429 research outputs found

    Influence of spin fluctuations near the Mott transition: a DMFT study

    Full text link
    Dynamics of magnetic moments near the Mott metal-insulator transition is investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution of the Hubbard model with additional fully-frustrated random Heisenberg couplings. In the paramagnetic Mott state, the spinon decomposition allows to generate a Sachdev-Ye spin liquid in place of the collection of independent local moments that typically occurs in the absence of magnetic correlations. Cooling down into the spin-liquid phase, the onset of deviations from pure Curie behavior in the spin susceptibility is found to be correlated to the temperature scale at which the Mott transition lines experience a marked bending. We also demonstrate a weakening of the effective exchange energy upon approaching the Mott boundary from the Heisenberg limit, due to quantum fluctuations associated to zero and doubly occupied sites.Comment: 6 pages, 3 figures. V3 was largely expande

    Nonparametric instrumental regression with non-convex constraints

    Full text link
    This paper considers the nonparametric regression model with an additive error that is dependent on the explanatory variables. As is common in empirical studies in epidemiology and economics, it also supposes that valid instrumental variables are observed. A classical example in microeconomics considers the consumer demand function as a function of the price of goods and the income, both variables often considered as endogenous. In this framework, the economic theory also imposes shape restrictions on the demand function, like integrability conditions. Motivated by this illustration in microeconomics, we study an estimator of a nonparametric constrained regression function using instrumental variables by means of Tikhonov regularization. We derive rates of convergence for the regularized model both in a deterministic and stochastic setting under the assumption that the true regression function satisfies a projected source condition including, because of the non-convexity of the imposed constraints, an additional smallness condition

    Mott transitions in correlated electron systems with orbital degrees of freedom

    Full text link
    Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard model are studied by means of a generalization of the linearized dynamical mean-field theory. The method allows for an efficient and reliable determination of the critical interaction U_c for any integer filling n and different M at zero temperature. For half-filling a linear dependence of U_c on M is found. Inclusion of the (full) Hund's rule exchange J results in a strong reduction of U_c. The transition turns out to change qualitatively from continuous for J=0 to discontinuous for any finite J

    Quantum impurity solvers using a slave rotor representation

    Full text link
    We introduce a representation of electron operators as a product of a spin-carry ing fermion and of a phase variable dual to the total charge (slave quantum rotor). Based on this representation, a new method is proposed for solving multi-orbital Anderson quantum impurity models at finite interaction strength U. It consists in a set of coupled integral equations for the auxiliary field Green's functions, which can be derived from a controlled saddle-point in the limit of a large number of field components. In contrast to some finite-U extensions of the non-crossing approximation, the new method provides a smooth interpolation between the atomic limit and the weak-coupling limit, and does not display violation of causality at low-frequency. We demonstrate that this impurity solver can be applied in the context of Dynamical Mean-Field Theory, at or close to half-filling. Good agreement with established results on the Mott transition is found, and large values of the orbital degeneracy can be investigated at low computational cost.Comment: 18 pages, 15 figure

    Robust Nodal Structure of Landau Level Wave Functions Revealed by Fourier Transform Scanning Tunneling Spectroscopy

    Full text link
    Scanning tunneling spectroscopy is used to study the real-space local density of states (LDOS) of a two-dimensional electron system in magnetic field, in particular within higher Landau levels (LL). By Fourier transforming the LDOS, we find a set of n radial minima at fixed momenta for the nth LL. The momenta of the minima depend only on the inverse magnetic length. By comparison with analytical theory and numerical simulations, we attribute the minima to the nodes of the quantum cyclotron orbits, which decouple in Fourier representation from the random guiding center motion due to the disorder. This robustness of the nodal structure of LL wave functions should be viewed as a key property of quantum Hall states

    Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2_2

    Full text link
    High-resolution angle-resolved photoemission (ARPES) data show that a metal-insulator Mott transition occurs at the surface of the quasi-two dimensional compound TaSe2_2. The transition is driven by the narrowing of the Ta 5d5d band induced by a temperature-dependent modulation of the atomic positions. A dynamical mean-field theory calculation of the spectral function of the half-filled Hubbard model captures the main qualitative feature of the data, namely the rapid transfer of spectral weight from the observed quasiparticle peak at the Fermi surface to the Hubbard bands, as the correlation gap opens up.Comment: 4 pages, 4 figures; one modified figure, added referenc

    Mott transition at large orbital degeneracy: dynamical mean-field theory

    Full text link
    We study analytically the Mott transition of the N-orbital Hubbard model using dynamical mean-field theory and a low-energy projection onto an effective Kondo model. It is demonstrated that the critical interaction at which the insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2) have different dependence on the number of orbitals as the latter becomes large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the critical coupling Uc2/N is obtained in the large-N limit. The metallic solution close to this critical coupling has many similarities at low-energy with the results of slave boson approximations, to which a comparison is made. We also discuss how the critical temperature associated with the Mott critical endpoint depends on the number of orbitals.Comment: 13 pages. Minor changes in V

    The Membrane-Associated Proteins FCHo and SGIP Are Allosteric Activators of the AP2 Clathrin Adaptor Complex

    Get PDF
    The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for C. elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the mu-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2
    • …
    corecore