Dynamics of magnetic moments near the Mott metal-insulator transition is
investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution
of the Hubbard model with additional fully-frustrated random Heisenberg
couplings. In the paramagnetic Mott state, the spinon decomposition allows to
generate a Sachdev-Ye spin liquid in place of the collection of independent
local moments that typically occurs in the absence of magnetic correlations.
Cooling down into the spin-liquid phase, the onset of deviations from pure
Curie behavior in the spin susceptibility is found to be correlated to the
temperature scale at which the Mott transition lines experience a marked
bending. We also demonstrate a weakening of the effective exchange energy upon
approaching the Mott boundary from the Heisenberg limit, due to quantum
fluctuations associated to zero and doubly occupied sites.Comment: 6 pages, 3 figures. V3 was largely expande