875 research outputs found

    Regression analysis with missing data and unknown colored noise: application to the MICROSCOPE space mission

    Get PDF
    The analysis of physical measurements often copes with highly correlated noises and interruptions caused by outliers, saturation events or transmission losses. We assess the impact of missing data on the performance of linear regression analysis involving the fit of modeled or measured time series. We show that data gaps can significantly alter the precision of the regression parameter estimation in the presence of colored noise, due to the frequency leakage of the noise power. We present a regression method which cancels this effect and estimates the parameters of interest with a precision comparable to the complete data case, even if the noise power spectral density (PSD) is not known a priori. The method is based on an autoregressive (AR) fit of the noise, which allows us to build an approximate generalized least squares estimator approaching the minimal variance bound. The method, which can be applied to any similar data processing, is tested on simulated measurements of the MICROSCOPE space mission, whose goal is to test the Weak Equivalence Principle (WEP) with a precision of 101510^{-15}. In this particular context the signal of interest is the WEP violation signal expected to be found around a well defined frequency. We test our method with different gap patterns and noise of known PSD and find that the results agree with the mission requirements, decreasing the uncertainty by a factor 60 with respect to ordinary least squares methods. We show that it also provides a test of significance to assess the uncertainty of the measurement.Comment: 12 pages, 4 figures, to be published in Phys. Rev.

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    Testing the equivalence principle: why and how?

    Full text link
    Part of the theoretical motivation for improving the present level of testing of the equivalence principle is reviewed. The general rationale for optimizing the choice of pairs of materials to be tested is presented. One introduces a simplified rationale based on a trichotomy of competing classes of theoretical models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra

    OPTIS - a satellite-based test of Special and General Relativity

    Get PDF
    A new satellite based test of Special and General Relativity is proposed. For the Michelson-Morley experiment we expect an improvement of at least three orders of magnitude, and for the Kennedy-Thorndike experiment an improvement of more than one order of magnitude. Furthermore, an improvement by two orders of the test of the universality of the gravitational red shift by comparison of an atomic clock with an optical clock is projected. The tests are based on ultrastable optical cavities, an atomic clock and a comb generator.Comment: To appear in Class. Quantum Gra

    Matter-gravity couplings and Lorentz violation

    Get PDF
    The gravitational couplings of matter are studied in the presence of Lorentz and CPT violation. At leading order in the coefficients for Lorentz violation, the relativistic quantum hamiltonian is derived from the gravitationally coupled minimal Standard-Model Extension. For spin-independent effects, the nonrelativistic quantum hamiltonian and the classical dynamics for test and source bodies are obtained. A systematic perturbative method is developed to treat small metric and coefficient fluctuations about a Lorentz-violating and Minkowski background. The post-newtonian metric and the trajectory of a test body freely falling under gravity in the presence of Lorentz violation are established. An illustrative example is presented for a bumblebee model. The general methodology is used to identify observable signals of Lorentz and CPT violation in a variety of gravitational experiments and observations, including gravimeter measurements, laboratory and satellite tests of the weak equivalence principle, antimatter studies, solar-system observations, and investigations of the gravitational properties of light. Numerous sensitivities to coefficients for Lorentz violation can be achieved in existing or near-future experiments at the level of parts in 10^3 down to parts in 10^{15}. Certain coefficients are uniquely detectable in gravitational searches and remain unmeasured to date.Comment: 59 pages two-column REVTe

    A Markovian event-based framework for stochastic spiking neural networks

    Full text link
    In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks

    Comparative evaluation by semiquantitative reverse transcriptase polymerase chain reaction of MDR1, MRP and GSTp gene expression in breast carcinomas.

    Get PDF
    Identification and quantitative evaluation of drug resistance markers are essential to assess the impact of multidrug resistance (MDR) in clinical oncology. The MDR1 gene confers pleiotropic drug resistance in tumour cells, but other molecular mechanisms are also involved in drug resistance. In particular, the clinical pattern of expression of the other MDR-related genes is unclear and their interrelationships are still unknown. Here, we report standardization of the procedures used to determine a reliable method of semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) using a standard series of drug-sensitive and increasingly resistant cell lines to evaluate the expression of three MDR-related genes, i.e. MDR1 (multidrug resistance gene 1), MRP (multidrug resistance related protein) and GSTp (glutathione-S-transferase p), reported to be endogenous standard genes for normalization of mRNAs. A total of 74 breast cancer surgical biopsies, obtained before any treatment, were evaluated by this method. When compared with classical clinical and laboratory findings, GSTp mRNA level was higher in diploid tumours. However, the main finding of our study suggests a clear relationship between two of these MDR-related gene expressions, namely GSTp and MRP. This finding provides new insight into human breast tumours, which may possibly be linked to the glutathione conjugate carrier function of MRP. Well defined semiquantitative RT-PCR procedures can therefore constitute a powerful tool to investigate MDR phenotype at mRNA levels of different related genes in small and precious tumour biopsy specimens

    Limits and dynamics of stochastic neuronal networks with random heterogeneous delays

    Full text link
    Realistic networks display heterogeneous transmission delays. We analyze here the limits of large stochastic multi-populations networks with stochastic coupling and random interconnection delays. We show that depending on the nature of the delays distributions, a quenched or averaged propagation of chaos takes place in these networks, and that the network equations converge towards a delayed McKean-Vlasov equation with distributed delays. Our approach is mostly fitted to neuroscience applications. We instantiate in particular a classical neuronal model, the Wilson and Cowan system, and show that the obtained limit equations have Gaussian solutions whose mean and standard deviation satisfy a closed set of coupled delay differential equations in which the distribution of delays and the noise levels appear as parameters. This allows to uncover precisely the effects of noise, delays and coupling on the dynamics of such heterogeneous networks, in particular their role in the emergence of synchronized oscillations. We show in several examples that not only the averaged delay, but also the dispersion, govern the dynamics of such networks.Comment: Corrected misprint (useless stopping time) in proof of Lemma 1 and clarified a regularity hypothesis (remark 1

    On the equivalence principle and gravitational and inertial mass relation of classical charged particles

    Full text link
    We show that the locally constant force necessary to get a stable hyperbolic motion regime for classical charged point particles, actually, is a combination of an applied external force and of the electromagnetic radiation reaction force. It implies, as the strong Equivalence Principle is valid, that the passive gravitational mass of a charged point particle should be slight greater than its inertial mass. An interesting new feature that emerges from the unexpected behavior of the gravitational and inertial mass relation, for classical charged particles, at very strong gravitational field, is the existence of a critical, particle dependent, gravitational field value that signs the validity domain of the strong Equivalence Principle. For electron and proton, these critical field values are gc4.8×1031m/s2g_{c}\simeq 4.8\times 10^{31}m/s^{2} and gc8.8×1034m/s2g_{c}\simeq 8.8\times 10^{34}m/s^{2}, respectively

    Quantum fluctuations for drag free geodesic motion

    Full text link
    The drag free technique is used to force a proof mass to follow a geodesic motion. The mass is protected from perturbations by a cage, and the motion of the latter is actively controlled to follow the motion of the proof mass. We present a theoretical analysis of the effects of quantum fluctuations for this technique. We show that a perfect drag free operation is in principle possible at the quantum level, in spite of the back action exerted on the mass by the position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change
    corecore