54,121 research outputs found

    The Chinese-French SVOM mission for Gamma-Ray Burst studies

    Full text link
    We present the Space-based multi-band astronomical Variable Objects Monitor mission (SVOM) decided by the Chinese National Space Agency (CNSA) and the French Space Agency (CNES). The mission which is designed to detect about 80 Gamma-Ray Bursts (GRBs) of all known types per year, will carry a very innovative scientific payload combining a gamma-ray coded mask imagers sensitive in the range 4 keV to 250 keV, a soft X-ray telescope operating between 0.5 to 2 keV, a gamma-ray spectro-photometer sensitive in the range 50 keV to 5 MeV, and an optical telescope able to measure the GRB afterglow emission down to a magnitude limit MR=23_R=23 with a 300 s exposure. A particular attention will be also paid to the follow-up in making easy the observation of the SVOM detected GRB by the largest ground based telescopes. Scheduled for a launch in 2013, it will provide fast and reliable GRB positions, will measure the broadband spectral energy distribution and temporal properties of the prompt emission, and will quickly identify the optical afterglows of detected GRBs, including those at very high redshift.Comment: Proceedings of the SF2A conference, Paris, 200

    Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon

    Full text link
    Using the relativistic point-coupling model with density functional PC-PK1, the magnetic moments of the nuclei 207^{207}Pb, 209^{209}Pb, 207^{207}Tl and 209^{209}Bi with a jjjj closed-shell core 208^{208}Pb are studied on the basis of relativistic mean field (RMF) theory. The corresponding time-odd fields, the one-pion exchange currents, and the first- and second-order corrections are taken into account. The present relativistic results reproduce the data well. The relative deviation between theory and experiment for these four nuclei is 6.1% for the relativistic calculations and somewhat smaller than the value of 13.2% found in earlier non-relativistic investigations. It turns out that the π\pi meson is important for the description of magnetic moments, first by means of one-pion exchange currents and second by the residual interaction provided by the π\pi exchange.Comment: 11 pages, 7 figure

    Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions

    Get PDF
    We consider the shadow system of the Gierer-Meinhardt system in a smooth bounded domain RN,At=2A−A+,x, t>0, ||t=−||+Ardx, t>0 with the Robin boundary condition +aAA=0, x, where aA>0, the reaction rates (p,q,r,s) satisfy 1<p<()+, q>0, r>0, s0, 1<<+, the diffusion constant is chosen such that 1, and the time relaxation constant is such that 0. We rigorously prove the following results on the stability of one-spike solutions: (i) If r=2 and 1<p<1+4/N or if r=p+1 and 1<p<, then for aA>1 and sufficiently small the interior spike is stable. (ii) For N=1 if r=2 and 1<p3 or if r=p+1 and 1<p<, then for 0<aA<1 the near-boundary spike is stable. (iii) For N=1 if 3<p<5 and r=2, then there exist a0(0,1) and µ0>1 such that for a(a0,1) and µ=2q/(s+1)(p−1)(1,µ0) the near-boundary spike solution is unstable. This instability is not present for the Neumann boundary condition but only arises for the Robin boundary condition. Furthermore, we show that the corresponding eigenvalue is of order O(1) as 0. ©2007 American Institute of Physic

    Glauber-based evaluations of the odd moments of the initial eccentricity relative to the even order participant planes

    Full text link
    Monte Carlo simulations are used to compute the centrality dependence of the odd moments of the initial eccentricity ϵn+1\epsilon_{n+1}, relative to the even order (n) participant planes Ψn\Psi^*_n in Au+Au collisions. The results obtained for two models of the eccentricity -- the Glauber and the factorized Kharzeev-Levin-Nardi (fKLN) models -- indicate magnitudes which are essentially zero. They suggest that a possible correlation between the orientations of the the odd and even participant planes (Ψn+1\Psi^*_{n+1} and Ψn\Psi^*_n respectively), do not have a significant influence on the calculated eccentricities. An experimental verification test for correlations between the orientations of the the odd and even participant planes is also proposed.Comment: 3 pages, 1 figure. Version accepted for publicatio

    Towards Identification of Relevant Variables in the observed Aerosol Optical Depth Bias between MODIS and AERONET observations

    Full text link
    Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program

    Functional Forms for the Squeeze and the Time-Displacement Operators

    Full text link
    Using Baker-Campbell-Hausdorff relations, the squeeze and harmonic-oscillator time-displacement operators are given in the form exp[δI]exp[α(x2)]exp[β(x)]exp[γ()2]\exp[\delta I] \exp[\alpha (x^2)]\exp[\beta(x\partial)] \exp[\gamma (\partial)^2], where α\alpha, β\beta, γ\gamma, and δ\delta are explicitly determined. Applications are discussed.Comment: 10 pages, LaTe
    corecore