16,535 research outputs found

    Non-contact method for measurement of the microwave conductivity of graphene

    Full text link
    We report a non-contact method for conductivity and sheet resistance measurements of graphene samples using a high Q microwave dielectric resonator perturbation technique, with the aim of fast and accurate measurement of microwave conductivity and sheet resistance of monolayer and few layers graphene samples. The dynamic range of the microwave conductivity measurements makes this technique sensitive to a wide variety of imperfections and impurities and can provide a rapid non-contacting characterisation method. Typically the graphene samples are supported on a low-loss dielectric substrate, such as quartz, sapphire or SiC. This substrate is suspended in the near-field region of a small high Q sapphire puck microwave resonator. The presence of the graphene perturbs both centre frequency and Q value of the microwave resonator. The measured data may be interpreted in terms of the real and imaginary components of the permittivity, and by calculation, the conductivity and sheet resistance of the graphene. The method has great sensitivity and dynamic range. Results are reported for graphene samples grown by three different methods: reduced graphene oxide (GO), chemical vapour deposition (CVD) and graphene grown epitaxially on SiC. The latter method produces much higher conductivity values than the others.Comment: 8 pages, 2 figures and 2 table

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Electronic density of states derived from thermodynamic critical field curves for underdoped La-Sr-Cu-O

    Full text link
    Thermodynamic critical field curves have been measured for La2xSrxCuO4+δLa_{2-x}Sr_{x}CuO_{4+\delta} over the full range of carrier concentrations where superconductivity occurs in order to determine changes in the normal state density of states with carrier concentration. There is a substantial window in the HTH-T plane where the measurements are possible because the samples are both thermodynamically reversible and the temperature is low enough that vortex fluctuations are not important. In this window, the data fit Hao-Clem rather well, so this model is used to determine HcH_c and κc\kappa_c for each temperature and carrier concentration. Using N(0) and the ratio of the energy gap to transition temperature, Δ(0)/kBTc\Delta (0)/k_BT_c, as fitting parameters, the HcvsTH_c vs T curves give Δ(0)/kBTc2.0\Delta (0)/k_BT_c \sim 2.0 over the whole range of xx. Values of N(0) remain rather constant in the optimum-doped and overdoped regime, but drops quickly toward zero in the underdoped regime.

    Markov processes follow from the principle of Maximum Caliber

    Full text link
    Markov models are widely used to describe processes of stochastic dynamics. Here, we show that Markov models are a natural consequence of the dynamical principle of Maximum Caliber. First, we show that when there are different possible dynamical trajectories in a time-homogeneous process, then the only type of process that maximizes the path entropy, for any given singlet statistics, is a sequence of identical, independently distributed (i.i.d.) random variables, which is the simplest Markov process. If the data is in the form of sequentially pairwise statistics, then maximizing the caliber dictates that the process is Markovian with a uniform initial distribution. Furthermore, if an initial non-uniform dynamical distribution is known, or multiple trajectories are conditioned on an initial state, then the Markov process is still the only one that maximizes the caliber. Second, given a model, MaxCal can be used to compute the parameters of that model. We show that this procedure is equivalent to the maximum-likelihood method of inference in the theory of statistics.Comment: 4 page

    The electrorheology of suspensions consisting of Na-Fluorohectorite synthetic clay particles in silicon oil

    Full text link
    Under application of an electric field greater than a triggering electric field Ec0.4E_c \sim 0.4 kV/mm, suspensions obtained by dispersing particles of the synthetic clay fluoro-hectorite in a silicon oil, aggregate into chain- and/or column-like structures parallel to the applied electric field. This micro-structuring results in a transition in the suspensions' rheological behavior, from a Newtonian-like behavior to a shear-thinning rheology with a significant yield stress. This behavior is studied as a function of particle volume fraction and strength of the applied electric field, EE. The steady shear flow curves are observed to scale onto a master curve with respect to EE, in a manner similar to what was recently found for suspensions of laponite clay [42]. In the case of Na-fluorohectorite, the corresponding dynamic yield stress is demonstrated to scale with respect to EE as a power law with an exponent α1.93\alpha \sim 1.93, while the static yield stress inferred from constant shear stress tests exhibits a similar behavior with α1.58\alpha \sim 1.58. The suspensions are also studied in the framework of thixotropic fluids: the bifurcation in the rheology behavior when letting the system flow and evolve under a constant applied shear stress is characterized, and a bifurcation yield stress, estimated as the applied shear stress at which viscosity bifurcation occurs, is measured to scale as EαE^\alpha with α0.5\alpha \sim 0.5 to 0.6. All measured yield stresses increase with the particle fraction Φ\Phi of the suspension. For the static yield stress, a scaling law Φβ\Phi^\beta, with β=0.54\beta = 0.54, is found. The results are found to be reasonably consistent with each other. Their similarities with-, and discrepancies to- results obtained on laponite-oil suspensions are discussed

    Learning State Representations via Retracing in Reinforcement Learning

    Get PDF
    We propose learning via retracing, a novel self-supervised approach for learning the state representation (and the associated dynamics model) for reinforcement learning tasks. In addition to the predictive (reconstruction) supervision in the forward direction, we propose to include “retraced” transitions for representation/model learning, by enforcing the cycle-consistency constraint between the original and retraced states, hence improve upon the sample efficiency of learning. Moreover, learning via retracing explicitly propagates information about future transitions backward for inferring previous states, thus facilitates stronger representation learning for the downstream reinforcement learning tasks. We introduce Cycle-Consistency World Model (CCWM), a concrete model-based instantiation of learning via retracing. Additionally we propose a novel adaptive “truncation” mechanism for counteracting the negative impacts brought by “irreversible” transitions such that learning via retracing can be maximally effective. Through extensive empirical studies on visual-based continuous control benchmarks, we demonstrate that CCWM achieves state-of-the-art performance in terms of sample efficiency and asymptotic performance, whilst exhibiting behaviours that are indicative of stronger representation learning

    Suppressed star formation in circumnuclear regions in Seyfert galaxies

    Full text link
    Feedback from black hole activity is widely believed to play a key role in regulating star formation and black hole growth. A long-standing issue is the relation between the star formation and fueling the supermassive black holes in active galactic nuclei (AGNs). We compile a sample of 57 Seyfert galaxies to tackle this issue. We estimate the surface densities of gas and star formation rates in circumnuclear regions (CNRs). Comparing with the well-known Kennicutt-Schmidt (K-S) law, we find that the star formation rates in CNRs of most Seyfert galaxies are suppressed in this sample. Feedback is suggested to explain the suppressed star formation rates.Comment: 1 color figure and 1 table. ApJ Letters in pres

    On the origin of multiple ordered phases in PrFe4P12

    Full text link
    The nature of multiple electronic orders in skutterudite PrFe_4P_{12} is discussed on the basis of a model with antiferro-quadrupole (AFQ) interaction of \Gamma_3 symmetry. The high-field phase can be reproduced qualitatively provided (i) ferro-type interactions are introduced between the dipoles as well as between the octupoles of localized f-electrons, and (ii) separation is vanishingly small between the \Gamma_1-\Gamma_4^{(1)} crystalline electric field (CEF) levels. The high-field phase can have either the same ordering vector q=(1,0,0) as in the low-field phase, or a different one q=0 depending on the parameters. In the latter case, distortion of the crystal perpendicular to the (111) axis is predicted. The corresponding anomaly in elastic constants should also appear. The electrical resistivity is calculated with account of scattering within the CEF quasi-quartet. It is found that the resistivity as a function of the direction of magnetic field shows a sharp maximum around the (111) axis at low temperatures because of the level crossing.Comment: 16 pages, 5 figure

    The distribution of silicate strength in Spitzer spectra of AGNs and ULIRGs

    Get PDF
    A sample of 196 AGNs and ULIRGs observed by the Infrared Spectrograph (IRS) on Spitzer is analyzed to study the distribution of the strength of the 9.7 micron silicate feature. Average spectra are derived for quasars, Seyfert 1 and Seyfert 2 AGNs, and ULIRGs. We find that quasars are characterized by silicate features in emission and Seyfert 1s equally by emission or weak absorption. Seyfert 2s are dominated by weak silicate absorption, and ULIRGs are characterized by strong silicate absorption (mean apparent optical depth about 1.5). Luminosity distributions show that luminosities at rest frame 5.5 micron are similar for the most luminous quasars and ULIRGs and are almost 10^5 times more luminous than the least luminous AGN in the sample. The distributions of spectral characteristics and luminosities are compared to those of optically faint infrared sources at z~2 being discovered by the IRS, which are also characterized by strong silicate absorption. It is found that local ULIRGs are a similar population, although they have lower luminosities and somewhat stronger absorption compared to the high redshift sources.Comment: Accepted for publication on ApJ
    corecore