20,220 research outputs found
Ursell operators in statistical physics of dense systems: the role of high order operators and of exchange cycles
The purpose of this article is to discuss cluster expansions in dense quantum
systems as well as their interconnection with exchange cycles. We show in
general how the Ursell operators of order 3 or more contribute to an
exponential which corresponds to a mean-field energy involving the second
operator U2, instead of the potential itself as usual. In a first part, we
consider classical statistical mechanics and recall the relation between the
reducible part of the classical cluster integrals and the mean-field; we
introduce an alternative method to obtain the linear density contribution to
the mean-field, which is based on the notion of tree-diagrams and provides a
preview of the subsequent quantum calculations. We then proceed to study
quantum particles with Boltzmann statistics (distinguishable particles) and
show that each Ursell operator Un with n greater or equal to 3 contains a
``tree-reducible part'', which groups naturally with U2 through a linear chain
of binary interactions; this part contributes to the associated mean-field
experienced by particles in the fluid. The irreducible part, on the other hand,
corresponds to the effects associated with three (or more) particles
interacting all together at the same time. We then show that the same algebra
holds in the case of Fermi or Bose particles, and discuss physically the role
of the exchange cycles, combined with interactions. Bose condensed systems are
not considered at this stage. The similarities and differences between
Boltzmann and quantum statistics are illustrated by this approach, in contrast
with field theoretical or Green's functions methods, which do not allow a
separate study of the role of quantum statistics and dynamics.Comment: 31 pages, 7 figure
Large amplitude spin waves in ultra-cold gases
We discuss the theory of spin waves in non-degenerate ultra-cold gases, and
compare various methods which can be used to obtain appropriate kinetic
equations. We then study non-hydrodynamic situations, where the amplitude of
spin waves is sufficiently large to bring the system far from local
equilibrium. In the first part of the article, we compare two general methods
which can be used to derive a kinetic equation for a dilute gas of atoms
(bosons or fermions) with two internal states (treated as a pseudo-spin 1/2).
The collisional methods are in the spirit of Boltzmann's original derivation of
his kinetic equation where, at each point of space, the effects of all sorts of
possible binary collisions are added. We discuss two different versions of
collisional methods, the Yvon-Snider approach and the S matrix approach. The
second method uses the notion of mean field, which modifies the drift term of
the kinetic equation, in the line of the Landau theory of transport in quantum
liquids. For a dilute cold gas, it turns out that all these derivations lead to
the same drift terms in the transport equation, but differ in the precise
expression of the collision integral and in higher order gradient terms. In the
second part of the article, the kinetic equation is applied to spin waves in
trapped ultra-cold gases. Numerical simulations are used to illustrate the
strongly non-hydrodynamic character of the spin waves recently observed with
trapped Rb87 atoms. The decay of the phenomenon, which takes place when the
system relaxes back towards equilibrium, is also discussed, with a short
comment on decoherence.Comment: To appear in Eur. Phys. J.
Castaing's instability in a trapped ultra-cold gas
We consider a trapped ultra-cold gas of (non-condensed) bosons with two
internal states (described by a pseudo spin) and study the stability of a
longitudinal pseudo spin polarization gradient. For this purpose, we
numerically solve a kinetic equation corresponding to a situation close to an
experiment at JILA. It shows the presence of Castaing's instability of
transverse spin polarization fluctuations at long wavelengths. This phenomenon
could be used to create spontaneous transverse spin waves.Comment: 5 pages, 3 figures; equation (8) corrected; submitted to EPJ
Tunable orbital susceptibility in - tight-binding models
We study the importance of interband effects on the orbital susceptibility of
three bands - tight-binding models. The particularity of
these models is that the coupling between the three energy bands (which is
encoded in the wavefunctions properties) can be tuned (by a parameter )
without any modification of the energy spectrum. Using the gauge-invariant
perturbative formalism that we have recently developped, we obtain a generic
formula of the orbital susceptibility of - tight-binding
models. Considering then three characteristic examples that exhibit either
Dirac, semi-Dirac or quadratic band touching, we show that by varying the
parameter and thus the wavefunctions interband couplings, it is
possible to drive a transition from a diamagnetic to a paramagnetic peak of the
orbital susceptibility at the band touching. In the presence of a gap
separating the dispersive bands, we show that the susceptibility inside the gap
exhibits a similar dia to paramagnetic transition.Comment: 15 pages,5 figs. Proceedings of the International Workshop on Dirac
Electrons in Solids 2015Proceedings of the International Workshop on Dirac
Electrons in Solids 201
Twining characters and orbit Lie algebras
We associate to outer automorphisms of generalized Kac-Moody algebras
generalized character-valued indices, the twining characters. A character
formula for twining characters is derived which shows that they coincide with
the ordinary characters of some other generalized Kac-Moody algebra, the
so-called orbit Lie algebra. Some applications to problems in conformal field
theory, algebraic geometry and the theory of sporadic simple groups are
sketched.Comment: 6 pages, LaTeX, Talk given by C. Schweigert at the XXI international
colloquium on group theoretical methods in physics, July 1996, Goslar,
German
Non--Newtonian viscosity of interacting Brownian particles: comparison of theory and data
A recent first-principles approach to the non-linear rheology of dense
colloidal suspensions is evaluated and compared to simulation results of
sheared systems close to their glass transitions. The predicted scenario of a
universal transition of the structural dynamics between yielding of glasses and
non-Newtonian (shear-thinning) fluid flow appears well obeyed, and calculations
within simplified models rationalize the data over variations in shear rate and
viscosity of up to 3 decades.Comment: 6 pages, 2 figures; J. Phys. Condens. Matter to be published (Jan.
2003
- …
