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Abstract: The recently introduced Galois symmetries of  rational conformal field 
theory are generalized, for the case of  WZW theories, to "quasi-Galois symmetries." 
These symmetries can be used to derive a large number of  equalities and sum 
rules for entries of  the modular matrix S, including some that previously had been 
observed empirically. In addition, quasi-Galois symmetries allow us to construct 
modular invariants and to relate S-matrices as well as modular invariants at different 
levels. They also lead us to a convenient closed expression for the branching rules 
of the conformal embeddings g ~ ~ ( d i m  ~). 

1. Introduction 

In the study of rational conformal field theories, modular transformations play an 
essential role. They turn the set of  the characters of all primary fields into a unitary 
module of SL(2, L Z), the twofold covering of the modular group of the torus. Via 
the Verlinde formula, they are also closely related to the fusion rules. 

In all cases where the modular matrix S is explicitly known, one observes 
that it contains surprisingly few different numbers, and that among the distinct 
numbers there are linear relations. While it has been known for a long time that 
simple currents lead to relations between individual S-matrix elements [13] ,  many 
other relations, in particular sum rules, have remained so far somewhat mysterious. 
Recently it has become clear that Galois symmetries [4, 5] are an independent source 
for relations between individual elements of  S [6, 7]. Both simple current and Galois 
symmetries exist for arbitrary rational conformal field theories, independent of  the 
structure of the chiral algebra. 

In this paper we will show that in the special case of  WZW theories, Galois 
symmetries can be generalized to what we will call quasi-Galois symmetries. A 
crucial ingredient of  our construction (which is not available for other conformal 
field theories than WZW theories) is the Kac-Peterson formula for the S-matrix. 
These new symmetries turn out to be rather powerful and allow us to derive three 

* Heisenberg fellow. 
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new types of  relations between the entries of  S: first, a sum rule which relates 
signed sums of S-matrix elements, see (3.4); second, the equality, modulo signs, 
of  certain specific S-matrix elements, see (4.1); third, a new systematic reason for 
S-matrix elements to vanish, see the remarks after (2.9). 

Just as in the case of Galois symmetries, the relations we find can be employed 
to construct elements of  the commutant of S, and therefore to generate modular 
invariants. Moreover, they can be used to obtain relations between invariants at dif- 
ferent values of  the level, i.e. between different WZW theories. Finally, we show that 
our results allow to determine the branching rules of  certain conformal embeddings. 

The rest of  the paper is organized as follows. In Sect. 2 we recall the basic facts 
about Galois symmetries of rational conformal field theories, and of WZW theories 
in particular, and show how in the WZW case they can be generalized to quasi- 
Galois symmetries. Also, as a first application, we describe how these symmetries 
force certain S-matrix elements to vanish. In Sect. 3 we construct integral-valued 
matrices that commute with the S-matrix; as a by-product we obtain an interesting 
sum rule (3.4) for the entries of  S. In Sect. 4 we obtain another symmetry, (4.1), of 
S as well as relations (see (4.8), (4.9)) between the S-matrices for WZW theories 
at different heights hi, h2, where hi is a multiple of  h2. Again, these results lead to a 
prescription for constructing S-matrix invariants, now both at the smaller and at the 
larger height (see (4.16) and (4.20), respectively). Finally, in Sect. 5 we consider 
a special case of  the latter invariants, which leads us to a closed formula for the 
branching rules of  the conformal embeddings g ~ ~6(dim ~), which can easily be 
evaluated explicitly. 

2. Quasi-Galois Scalings 

When analyzing the mathematical structure of  a WZW theory, we are dealing with 
integrable highest weight representations of  an untwisted affine Lie algebra g at a 
fixed integral level k v. As the level is fixed, the g-weights are already fully de- 
termined by their horizontal part, i.e. by the weight with respect to the horizontal 
subalgebra ~ of g. In the following it will be convenient to shift all weights ac- 
cording to a G 2a + p by the Weyl vector p. Note that if  the non-shifted weight 2a 
is at level k v, the shifted weight a is at level h, where 

h := k v + 9 v , (2.1) 

with g v the dual Coxeter number of ~; we will call h the height of the weight a. 
The set of (shifted) integrable weights of  the affine Lie algebra g at height h is 

Ph := {a E LWl0 < a i < k v + 1 for i = 0, 1 . . . . .  r } .  (2.2) 

Here L w denotes the weight lattice, i.e. the Z-span of the fundamental weights. In 
other words, the weights (2.2) are precisely the integral weights in the interior of  
the dominant affine Weyl chamber at level k v + gV. 

An important tool for studying the modular properties of WZW theories is the 
Kac-Peterson formula [8], 

[ 27ri ] 
Sa'b = YwCWE sign(w)exp l -~- (w(a) ,b  ) ] (2.3) 
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for the modular matrix S. Here the summation is over the Weyl group W of  the 
finite-dimensional horizontal subalgebra ~ of  g. Some immediate consequences of  
this formula are the following. First, the fact that according to (2.3) Sa, b depends 
on a and b only via the inner products (w(a) ,b)  and the identity ( w ( l a ) , b ) =  
l(w(a),  b) = (w(a),  lb) imply that 

Sla, b = Sa, lb ; (2.4) 

and second, for any element ~ of  the affine Weyl group fie (i.e. the horizontal 
projection of  the Weyl group of  the affine algebra g), one has 

S~o),b = sign0b) Sa, b �9 (2.5) 

This implies in particular that Sa, b = 0 whenever a or b lies on the boundary of  an 
affine Weyl chamber. Note that in (2.4) and (2.5) it is implicit that the quantity 
So, b given by (2.3) can be considered also for weights which are not integrable. 
This is possible because we are free to take the formula (2.3) (which for integrable 
weights yields the entries of  the actual S-matrix, i.e. o f  the matrix which realizes 
the modular transformation z ~ - 1 / ~  on the characters) for arbitrary weights a,b 
as the definition of  Sa,b. Analogously, these weights need not even be integral, and 
hence (2.4) is valid for arbitrary numbers l, not just for integers. 

To apply Galois theory to conformal field theory, one considers the number field 
that is obtained as the extension of  the rationals • by all S-matrix elements. One 
can show [5] that this extension is a Galois extension and that its Galois group is 
abelian, implying that the number field is contained in some cyclotomic field Q(~n). 
The Galois group of  the extension I1)(~n)/ll~ is isomorphic to 7/*, the multiplicative 
group of  all elements of  7Z~ that are coprime with n. The Galois automorphism 
corresponding to an element l c 2g* acts as ~ ~ (~,)l. 

In the special case of  the WZW theory based on the untwisted affine Lie algebra 
g at height h, the relevant root of  unity is given by (Mh, with M the smallest positive 
integer for which the M-fo ld  of  all entries of  the metric on the weight space of  ~ is 
integral. 1 A Galois transformation labeled by l C 7/Mh then induces the permutation 
A ~ ~ ( l ( A  + p))  - p of  the highest weights carried by the primary W Z W  fields, 
or equivalently, the permutation 

d- - d-(/): a ~ d-a := ~b~(la) (2.6) 

of  shifted highest weights. Here ~ is an element of  the affine Weyl group at 
level h, i.el 

~b~(b) = w~(b) + hta , (2.7) 

where Wa is some element of  the finite Weyl group W and t~ some weight 
which belongs to the coroot lattice L v of  ~. They are defined by the condition 
that ~ ( l a ) ~  Ph, which determines Wa and t~ uniquely. Substituting (2.6) into 
the formula for W Z W  conformal dimensions one easily obtains a condition for 
T-invariance, namely 12 = 1 rood 2Mh (or rood Mh if  all integers M ( a , a )  are 
even). 2 

1 Actually the cyclotomic field tl)(~Mh) does not yet always contain the normalization ~Ar ap- 
pearing in (2.3); rather, sometimes a slightly larger cyclotomic field must be used [5]. However, 
the permutation # can already be determined from the generalized quantum dimensions, which do 
not depend on Jg'. Accordingly, the correct Galois treatment of JV" just amounts to an overall sign 
factor which is irrelevant for our purposes. 

2 For more details, see in particular Appendix A of [7]. 
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The key idea in the present paper is to allow in the transformation (2.6) for 
arbitrary integers l rather than only elements of 2g~vth. As we will show, these 
generalized transformations lead to interesting new information. Note that if l ~ 7Z~vth, 
then in order for the map (2.6) of the integrable weights to be still well-defined, 
we must slightly extend the prescription for the Weyl group element v~a. Namely, 
eva is now determined by the condition that either la lies on the boundary of 
some affine Weyl chamber (in which case v?a can simply be taken to be the identity), 
or else that r  E Ph. In the latter case, ~ ,  is the unique element of W with 
this property, and we write 

sign(~a) = sign(w~) =: et (a) ,  (2.8) 

while in the former case we put el(a) = 0. While the map (2.6) is thus still well- 
defined for l r Z~u h, it can no longer be induced by a mapping (Mh H (~Mh) l of 
the number field, and hence in particular it no longer corresponds to a Galois 
transformation. Nevertheless the similarity with Galois transfolanations is still so 
close that we call the map a ~-+ la, With l not coprime with Mh, a quasi-Galois 
scaling and the associated map d (2.6) a quasi-Galois transformation. 

Note that it is not true that an arbitrary integral weight b can be mapped into 
Ph by an appropriate affine Weyl transformation. However, if b is of the special 
form b = la with a E Ph and l coprime with Lh, this is indeed possible [7]; here 
L denotes the "lacedness" of ~, i.e. L = 2 for ~ of type B or C or F4, L = 3 for 

= G2, and L = 1 else. The condition that l is coprime with Lh is in particular 
fulfilled whenever the scaling corresponds to an element of the Galois group, and 
hence in the case of genuine Galois transformations a suitable unique ~a E W exists 
for any a E Ph, implying that the map d is indeed a permutation of the weights in 
Ph. In contrast, for a quasi-Galois scaling there will in general exist some a c Ph 
for which la lies on the boundary of an affine Weyl chamber, so that 6- is not even 
an endomorphism of the set of integrable weights. However, in terms of WZW 
primary fields the latter situation corresponds to mapping the primary field with 
highest weight a to zero, so that d can still be interpreted as a linear map on 
the fusion ring that is spanned by the primary fields. Moreover, this can also be 
translated back to the language of weights by adding to the set Ph a single element 

which stands for the union of all boundaries of affine Weyl chambers. In this 
setting, the map (2.6) supplemented by 6"(~) = N is an endomorphism of the set 
Ph U {N}, though it is no longer a permutation. 

Consider now an arbitrary scaling a ~-+ la, l E 7/\{0}, with associated (quasi-) 
Galois transformation given by (2.6). As follows immediately by applying the iden- 
tities (2.4) and (2.5) to Sea, b, we then have the identity 

~l (a )  S6a, b = 6 l ( b )  Sa, db �9 (2.9) 

For genuine Galois scalings, this result was already obtained in [5]. In the 
quasi-Galois case, the two sides of (2.9) are not necessarily non-vanishing, and 
this provides us with an explanation for the vanishing of certain S-matrix ele- 
ments. Namely, if for the quasi-Galois scaling l the weights b and c := da are 
contained in Ph, but 6-b is not (i.e. lb lies on the boundary of an affine Weyl 
chamber), then (2.9) tells us that Sc, b = 0. (Another systematic reason for S-matrix 
elements to be zero is provided by simple current symmetries: Sa, b = 0 i f a  is a fixed 
point of the simple current J and b has non-vanishing monodromy charge [2] with 
respect to J . )  
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3. Quasi-Galois Modular Invariants 

Consider for a given quasi-Galois scaling l the matrix H with entries in {0,• 
that describes the mapping induced by the scaling on the primary fields, i.e. 

H(l) 17a, b =-- "~a,b : =  el(a)rb,,.~a �9 (3.1) 

Equation (2.9) can then be written as 

(HS)a ,b  = e l (a)  S,~a,b = e l (b)  S~,,~b = (SFI t)a,b . (3.2) 

Multiplying this equation from both the left and the right with S +, the hermitian 
conjugate of S, using the unitarity of S and taking the hennitian conjugate of this 
equation, we see that 

( r l tS)a ,b  = ( S n ) a , b  . (3.3) 

This relation describes in fact a rather remarkable sum rule for S-matrix elements: 
writing the matrix multiplication in (3.3) explicitly, it reads 

el(c),L,,~c Sc, b = ~ el(c) ,~b,,~c&,c. 
ccPh c~Ph 

(3.4) 

Generically the sums appearing in (3.4) contain more than one non-vanishing term; 
to our knowledge it is the first time that a relation of this type between S-matrix 
elements has been established in a general framework. 

By introducing the pre-images of a quasi-Galois transformation, 

X- l (a )  := {c E Phial(c) = a} (3.5) 

for any a E Ph, we may rewrite the sum rule (3.4) in the more suggestive manner 

el (c)Sc ,  b = ~ et(c)S~,c  . (3.6) 
cEX-I(a) cEX-I(b) 

If the map (2.6) is invertible, then (3.6) reduces to the relation 

e l ( d - l a ) S j _ l a ,  b = e l ( d - l b ) S a ,  d_lb , 

which is equivalent to the identity (2.9) applied to the map 6 -1. 
Combining the two relations (3.2) and (3.3), it follows that the matrix 

(3.7) 

commutes with the modular matrix S, 

E Z(l), s] = o .  (3.9) 

Typically the S-matrix invariant Z (l) obtained this way is not positive, nor does it 
commute with T. This pattern already arises for ordinary Galois scalings. However, 
just as in the Galois case [6, 7], it is still possible to construct physical modular 
invariants, because one can get rid of the minus signs and achieve T-invariance by 
suitably adding up various invariants of the type above and possibly combining with 
other methods such as simple currents. Note that in the invariant (3.8) typically some 
of the fields are projected out, and hence when using quasi-Galois transformations 
it is in fact easier to obtain T-invariance than in the Galois case. 

Z (0 := H + I I t  (3.8) 
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To give an example for a matrix that commutes with the S-matrix and that is 
obtained by the above prescription, let us consider the scaling l = 3 for the A1 
WZW theory at height h = 6. In terms of non-shifted highest weights, this scaling 
maps A = 0 and A = 4 with a positive sign el on A = 2, the weight A = 2 with 
a negative sign on itself, and the weights A 
matrix Z (3) defined by (3.8) reads 

Z (3) = 
i 0 1 0 0 0 0 

0 - 2  0 
0 0 0 
0 1 0 

= 1, 3 on the boundary N. Thus the 0) 
. ( 3 . 1 o )  

While this matrix has negative entries and is hence unphysical, the combination 

2 --= (Z(3)) 2 + 2Z (3) (3.11) 

is a physical invariant, namely the D-type invariant of the height 6 A1 theory. As 
the number of primary fields is rapidly increasing with the rank and level, most 
applications of our prescription which lead to physical invariants involve rather 
complex expressions; therefore we will not display more complicated examples 
explicitly. 

Actually the invariant (3.11) can also be obtained from genuine Galois trans- 
formations [7]. An example for a physical modular invariant which cannot be ex- 
plained that way, but which is obtainable as a linear combination of quasi-Galois 
invariants is the exceptional ET-type invariant of A1 at level 16. However, the con- 
crete expression is rather lengthy so that we refrain from presenting it here. As 
we shall see later, also for the E7-type invariant there exists a close relation to 
the matrix Z (3) displayed in (3.10) even though they are invariants at different 
heights. 

4. S-Matrix Invariants: Increasing and Lowering the Height 

In this section we consider the special case where the scaling factor l E 7/>o is a 
divisor of the height; to simplify notation, we will make this explicit by denoting 
the height of the theory to which the scaling is applied by lh. As we will see, in 
this situation there exist intimate relations between the WZW theories at height lh 
and at height h. 3 As we are now dealing with weights at two distinct heights, we 
find it convenient to denote the elements of Ph by lower case and the elements of 
Pzh by upper case roman letters, respectively. Similarly, we use the capital letter 
"S" for the S-matrix of the height lh theory and the symbol "s" for the S-matrix 
of the height h theory. 

Before describing the relationship between height h and height lh theories, let us 
first prove another new symmetry property of the S-matrix: if the height is divisible 
by l, then for any B E Pzh the signed S-matrix elements 

~z(C)" Sla, C (4.1) 

are identical for all C c S-I(B) .  To check this statement, take any fixed B E P~h 
and any C E S-I(B) .  Then considering weights of the form A = la with a E ph, 

3 We are grateful to T. Gannon for remarks that triggered the work presented in this section. 
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and using the fact that 6-C = w c ( l C )  + lh tc with wc E W and tc E L v, as well as 
el(C) = sign(wc), we find 

E ] SIa, c = .A/" ~ sign(w)exp - ~ ( w ( l a ) ,  l - l w c l ( B )  + ht~c) 
wCW 

= .A/" ~ sign(w)exp - - - s  
wEW 

= sign(wc) �9 ~/~ ~ sign(w) exp - (w(a ) , l -~B)  . (4.2) 
w~W 

The only dependence of the right-hand side on the weight C is thus via the 
signet(C) -= sign(wc), and hence we have established the symmetry (4.1). 

The primary WZW fields q0~ and q~A which are associated to the weights in Ph 
and in PZh, respectively, can be viewed as the generators of  the fusion rings ~h and 
N1h of the height h and height lh WZW theories, respectively. Let us introduce the 
mappings 

P:  ~lh ~ r 

~)A ~-+ P(OA)  = ~ PA, b~Ob, PA, b : =  81(A)~dA, lb,  (4.3) 
bEPh 

and 

D: ~h --+ ~th 

q9 a H D(~Oa) = ~ Da,B~B, Da, B := ~la,B (4.4) 
BEPlh 

between these two fusion rings. Note that because of 

l - i d A  = l - l (wA( lA)  + lh tA) = WA(A) + htA (4.5) 

with WA E W and tA E L v for any A E Plh, the weight 1-16A is integral and either 
an element of  Ph or else on the boundary of an affine Weyl chamber at height 
h. Also, Pb, b = 1 (here the first label b is to be considered as an element of Plh) 
which shows that the map P is always non-zero. 

The relation (4.5) implies that there is a close connection, which will prove to 
be useful later on, between the conformal dimensions A mod 77 of all those fields 
which belong to the same pre-image under the map 6. Namely, from the definition 
Aa = [(a,a)  - ( p , p ) ] / 2 h  of the conformal dimensions at height h (and the fact that 
any Weyl group element w E W is an isometry), it follows that 

l(Ab -- Ac) = (2h l ) - l [ (a  + htb, a + htb) -- (a + htc, a + htc)] 

= l - l (a ,  t b -  to )+ ~hl- l[( tb,  t b ) -  (tc, tc)] (4.6) 

for b,c E 2-1(a) ;  we will use this equation only modulo 77. Since tb, t~ E L  v, we 
have (a, tb) E 2g, (tb, tb) E 277, and analogously for to, and hence the right-hand side 
of (4.6) is an integral multiple of  1-1. I f  in addition the height is divisible by l, 
then according to (4.5) this is also true for the Dynkin components of  any a for 
which Z-~(a)  is non-empty, and hence in this case the right-hand side is in fact 
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an integer, so that Ab -- Ac E l - l Z  for h = lh I and b,c E Z - l ( a ) .  In the notation 
appropriate to the height lh theory we thus have, for all A C Plh, 

AB -- Ac  E t-12g for B , C  E X-~(A).  (4.7) 

The relevance of the maps P and D that we introduced in (4.3) and (4.4) comes 
from the fact that they provide direct relations between the two modular matrices 
S and s. Namely, we find 

S D  t = l - r /2ps ,  (4.8) 

PtS = lr/2sD. (4.9) 

Equivalently, by taking the transpose, we can write these identities as 

DS = l -r /2sP t , (4.10) 

S P  = lr/2Dts. (4.11) 

To prove (4.8), we first separate the height-independent part of the normalization 
factor Y in the Kac-Peterson formula (2.3) from the rest, 

N~ - ~A#(h) = i(d-r)/alLW/LVl-1/2h r/2 = :  h-r/2 ~ , (4.12) 

where d is the dimension of g- Then we compute 

(SDt)A,b = SA, lb = ( l h ) - ~ / 2 ~  ~ sign(w)exp - ~ f f ( w ( A ) ,  b) 
wCW 

= (lh) -~/2 ~ ~ sign(w) exp - ~ - ( w ( A ) ,  b) (4.13) 
wEW 

and, once again making use of dA = WA(lA) + lh tA with WA E W and tA E L v, and 
of st(A) = sign(wA), 

(PS)A,b : ~l(A)Sl- ldA,b 

2hi 
: h -r/2 T sign(wA) ~ sign(w) exp -- ~ - ( W ( W A ( A )  

wEW 

: h - " / 2 ~  ~ sign(w)exp - ~ - ( w ( A ) , b )  . 
wEW 

+ ha),b) 1 

(4.14) 

Comparing (4.13) and (4.14), we obtain (4.8). 
The relation (4.9) can now be proven by multiplying (4.8) from the left with 

the hermitian conjugate S + of  S and from the right with s +. Using the unitarity of  
S and s and taking the hermitian conjugate yields (4.9). 

We can now apply the results just proven to the construction of  S-matrix 
invariants, both at height h and at height lh. Namely, assume first that the ma- 
trix Z belongs to the commutant of  the S-matrix of  the height lh theory, i.e. that 

[ ~ S ] = 0 .  (4.15) 
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Further, define 

Explicitly, we have 

s  + D Z P .  (4.16) 

Za, b = ~ et(A)ZA,lb + ~ el(B)Zla, B. (4.17) 
ACZ-I(la) BEX-I(tb) 

Using (4.15) as well as the relations (4.8)-(4.11) proven above, we can then 
derive that 

s  = p t  Z D  t s + D Z P  s = l - r / 2 p  t Z S P  + l r / 2 D Z  S D  t 

= l - r / 2 p  t S Z P  + lr/2D S Z D  t = s D Z P  + s P  r Z D  t = s Z .  (4.18) 

Similarly, let z be an S-matrix invariant of the height h theory, 

[z,s] = 0 ,  (4.19) 

and define 
2 := D t z p  t + P z D .  (4.20) 

Using the convention that za, b = 0 whenever a or b is not in Ph, the matrix elements 
of 2 read 

ZA,B = ~l(A)Zl-ldA, l-1 B + ~l(B)Zl-lA, l-ldB . (4.21) 

By employing (4.19) and again (4.8)-(4.11), we obtain 

S = D t z p t S  + P z D S  = I r / 2 D t z s D  + l - r / 2 p z s P  t 

= l r /2D t s z D  + I - r / 2 p s z P  t = S P z D  + S D t z p  t = S Z .  (4.22) 

We have thus proven the following remarkable facts: Given an S-matrix invariant 
Z at height th,  the formula (4.16) provides us with an S-matrix invafiant s at 
height h, 

[Z, s] = 0 ; (4.23) 

and conversely, given an S-matrix invariant z at height h, the formula (4.20) defines 
an S-matrix invariant 2 at height lh,  

[2, S] = 0.  (4.24) 

Not surprisingly, the prescriptions (4.16) and (4.20) do not respect positivity, i.e. 
even if Z (respectively z) is a positive invariant, this need not hold for if(2). 

As an example, let us take for Z the exceptional invariants of A1 which all occur 
at heights of a multiple of 6, namely for h = 12, 18,30, and obtain from them by 
(4.16) invariants of A1 at height 6. For h = 12 and h = 30 the prescription (4.16) 
yields the zero matrix. More interesting is the E7-type invariant at h = 18; in this 
case ff is precisely the quasi-Galois invariant (3.10) obtained in the previous section. 

Note that the maps (4.3) and (4.4) are related to the map/ / in t roduced  in (3.1) 
b y / / =  P D :  

HA,~ = el(A)6B,~A --  ~ el(A)61c,~A6B, lc = ~ PA,cDc,~ �9 (4.25) 
ccPh c~Ph 
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The prescription (4.20) actually provides a generalization of the quasi-Galois 
S-matrix invariant (3.8). Namely, according to (4.25), when considering the di- 
agonal invariant z = ~, (4.20) yields 

2 = P D + D t p t  = 11 § FIt , (4.26) 

i.e. reproduces the invariant (3.8). A still more special case is obtained by perform- 
ing the scaling by the factor l at height /gV. Then the smaller level is in fact zero, 
so that there is a single primary field with shifted weight a = p, and hence a single 
nontrivial invariant z~,b = 6~,p6b, p. In this situation, (4.21) reads 

NA,B = ~A, lp ~ gl(C)(~B,C + 6S, lp ~ Sl(C)(~A,C �9 (4.27) 
Cc~- l ( lp )  CEZ l(Ip) 

In applications (see in particular Sect. 5 below) it is often not the matrix (4.27) 
that is directly relevant, but rather the combination 

2 2 - -  2 := 2 e l ( l p ) 2  (4.28) 

(compare the similar formula (3.11)). The entries of (4.28) read 

where 

ZA,e = 12-1(lp)[ (~A, lp(~B, Ip § ~ gl(C)gl(D)(~A, CaB, D,  
C, DeZ-I ( Ip)  

(4.29) 

We find 

and 
QA,e := 6A,e " ~ 6A,lb . (4.32) 

bEP h 

Z = 2 F z  + 7zzTr + 7ztzTz t , (4.33) 

and a similar formula for Z. The result (4.33) means that whenever z commutes 
with s, then so does the matrix 7zz rc + rdz zd. Also note that in (4.31) the map 
is the quasi-Galois transformation with scale factor l at height lb. This implies that 
d(la) = l ( w l a ( l a ) +  htla),  and hence the 6-symbol in (4.31) imposes the constraint 
that the weight b is related to a by a quasi-Galois transformation with the same 
scale factor l, but now at height h. In other words, as already anticipated in the 
notation, the map rc = D P implements the same quasi-Galois scaling for the height 
h theory as the map 1I = P D  (4.25) implements for the height lh theory. 

s - l ( I p )  := Z - ' ( l p ) \ { l p }  . (4.30) 

Note that in the invariant 2 only fields belonging to Z - l ( l p )  get mixed; by (4.7) 
this implies that 2 is not only S-invariant, but also invariant under T z. It is also 

easily checked that 22 = [Z-l( lp) t2,  so that by taking powers of 2 we cannot 
produce any new invariants. 

We can also apply the constructions (4.20) and (4.16) consecutively to a height h 
S-matrix invariant, or in the opposite order to a height lh invariant. The computation 
then involves the identities P D  = 1I, D D  t = ll, p t p  = lrll, as well as D P  = 7r and 
D t D  = Q with 

7~a, b := s l ( l a )  61b, e(la) (4.31 ) 
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5. Conformal Embeddings 
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Conformal embeddings are embeddings g ~ h of untwisted affine Lie algebras for 
which the irreducible highest weight modules possess finite branching rules. The 
explicit form of these branching rules has been determined for various cases (see 
e.g. [9-15]), but a general formula is not known, and there are still many conformal 
embeddings for which all known methods are inapplicable. 

The list of conformal embeddings [16, 17] contains several infinite series. Here 
we are interested in a particular infinite series, namely the embedding ggv ~-+ ~6(d)1, 
i.e. of  g at level g v (with g an arbitrary untwisted affine Lie algebra) into gb(d), 
with d -  dim ~, at level one. In terms of the horizontal algebras, the embedding 
is the one for which the vector representation of so(d) branches to the adjoint 
representation of the smaller algebra ~. Such embeddings are of particular interest 
because they are connected with the "fermionization" of WZW models with level 
gV, which is due to the fact that /b(d) can be written in terms of free fermions. 
This will play a r61e in the following. 

The diagonal level one g~(d) partition function is 

~eso(d)(r,~) = [2go] 2 + 12gvl 2 + lS~s[ 2 + 15Fol 2 for d even, (5.1) 

and 
~e~o(d)(Z,~) = I~Col 2 + 12gv[ 2 + I~sl 2 for d odd,  (5.2) 

where o, v, s and c refer to the singlet, vector, spinor, and conjugate spinor repre- 
sentation of so(d), respectively. Our objective is to write each of  these characters 
in terms of the characters ZA of g at level g v. 

The branching rule for the g6(d) spinor(s) is already known explicitly ([18], see 
also [19, 10,20]). Up to a multiplicity, they branch to a single irreducible represen- 
tation, namely the one whose (unshifted) highest weight is the Weyl vector p. We 
will denote this irreducible representation by Lp. The dimension of the analogous 
irreducible representation of the horizontal algebra ~ is 2 N+, where N+ = (d - r ) /2  
is the number of positive roots (and r is the rank of ~); hence the multiplicity with 
which Lp is contained in the ~6(d) spinors is 2 r/2-1 if d is even, and 2 (r-I)/2 if d 
is odd. A closed formula for the branching rules of the s singlet and vector is 
also known [10], but (see (5.20) below) it involves the image W ( p )  of the Weyl 
vector under the afiqne Weyl group and hence is not convenient for explicit calcu- 
lations. (As a matter of  fact, only in very few cases, such as for ~ = G2 [12], the 
branching has already been determined explicitly). Accordingly, we will not employ 
this formula, but rather prove an equivalent formula which allows for an immediate 
evaluation on a computer. To start, we make the following general ansatz for the 
relation between level one gb(d) and ggv characters: 

~o ~ A A mo ZA, ~v ~ 2Fs 2Fc (5.3) = = mv ZA, = = 2r/2-1Zp 
ACPgv AGPev 

for d even, and 

~'o ~ A A " = mo ZA, f v  = ~ 2gs = (5.4) mv )~A, 2(r- 1)/2Zp 
A@P ev AGP gv 

for d odd. Here and below we label the integrable ggv representations by their 
unshi f ted  highest weights (in particular we will use A = p in place of a = 2p); 
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accordingly, the summations in (5.3) and (5.4) are over the unshifted fundamental 
chamber Pgv (g); also, mo and mv are non-negative integral vectors in the space of 
all characters. The equality of  the decomposition of the two ~ ( d )  spinor characters 
for even d implies that these representations will appear as a fixed point of  order 
2 in the ggv modular invariant. Hence the invariant will have the form 

mAoZA 2 my ~A 2 ~c-e.  = E + E A + 2 .  ]2r/2-t)~p] 2 ( 5 . 5 )  
ACPgv AEPgv 

for d even, and 

moAZA 2 mv ZA 2 ~ . e - -  E + E A + 12<r-l)/ezol 2 (5.6) 
ACPgV ACPgv 

for d odd. 
The identity and vector characters of Kr(d) branch to distinct ggv characters, 

since the difference of conformal dimensions of  identity and vector is non-integral. 
Thus the vectors mo and my are orthogonal. We will focus first on the cases where 
also the spinor(s) have different conformal weights modulo integers than identity 
and vector, which holds if  d4:0 modS. Then by the same argument the spinor(s) 
branch to different ggv characters than identity and vector characters, and hence 
we have mo p = my p = 0. This situation is covered by the following simple theorem. 
Consider any S-invariant (such as (5.5), (5.6)) that is a sum of squares, i.e. of  the 
form 

2 

J / g =  E N p  E mA•A . (5.7) 
P A@Pgv 

This can be written as ~A,  Atcp#XAMA, A,Z~,, where M is the matrix with entries 

MA ' A t A A r = ~ N p m p m p  . (5.8) 
P 

Further, suppose that the vectors mp are orthogonal, 

A A mpmp~ = Rp3ppt . (5.9) 
ACPov 

Let us also impose the physical requirement that there is a unique vacuum, i.e. 
that M satisfies Moo = 1; then among the vectors mp there must be precisely one, 
conventionally labeled by p = 0, which contains the identity character, i.e. we must 
have No = 1 and m ~ = 1. Next consider the matrix M2; it has entries ( M 2 ) A , A  t = 

Ar2p m A --A t �9 in particular, (M2)0o = R0. Thus the matrix M 2 - RoM has entries p~,p~,p p nip  , 

(M 2 - RoM)A, A' E p ( N 2 R ;  A a' = - N p R o ) m p m p .  Finally, the square Z of the latter 
matrix has entries 

ZA, A t ~ ( [ m  2 RoM]Z)A,W ~ (NpRp 2 A A t - = - Ro) NpRpmp m p .  (5.10) 
P 

This is a manifestly non-negative matrix, it obeys Zoo = 0, and because it is a 
polynomial in M it commutes with S. Thus 0 = Zoo = ~A,A ,  ee#SoAZA, AtSoA, > 0, 
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with equality only if ZA, A, = 0 for all A,A'E Pgv; i.e., any such matrix must 
vanish. By (5.10), the vanishing of Z implies that for any p the sum rule 

Np 2 (mA) 2 -= XpRp = Ro (5.11) 
AEPgv 

holds. This is equivalent to the property M 2 = RoM, so that M is idempotent up 
to a normalization. 

In the situation of our interest, these sum rules give useful information because 
we know Np and nap for the spinor characters. For even d, the spinors have N = 2, 
and hence (5.11) tells us that 

and for d odd we get 

Ro=NvRv=2 �9 ( 2 ~ 2 - I ) 2 = 2 , ' - I  ' (5.12) 

S-matrix of  the s theory, we have 

2[r/21-r/2( Xo - Xv )('c ) = .~es ( - !  ) = 2[r/2] Zp (--+ ) = 2  [#2] ~ (Sg)p,A)~A('C) �9 
ACPgV 

(5.14) 

This formula holds in fact for the full characters, not just for the Virasoro specialized 
ones. Since the full characters form a basis of the relevant module of  SL(2, ~), and 
since in the expansions of  Xo and Xv into powers of q = exp(2=iz) the fractional 
powers of  q are different, it follows that (5.14) already determines the branching 
rules of the singlet and vector characters uniquely. In particular the knowledge that 
Z0 must appear with multiplicity one in the branching rule for Xo implies that 
(Sg)p, 0 = 2 -r/2, and that for any A E Pgv, (Sg)p,A must be an integral multiple of 
this number. 

All the properties of the conformal embedding invariants that were obtained 
above follow by rather general arguments. We will now discuss how one can obtain 
these invariants (i.e. the form of the vectors mo and my) in a much more explicit 
manner by employing a quasi-Galois scaling by a factor 2. Thus consider g at height 
h = 2g v, and the quasi-Galois scaling l = 2. Applying the prescription (4.20), we 
obtain the special case l = 2 of the S-matrix invariant (4.29). In terms of unshifted 
weights, (4.29) reads 

ZA, A' = [~--l(p)[C~A, pCSAI, p ~- ~ '~(~)g.(~t)lSA,,u(~At,#" . (5.15) 
u,t#cZ-l(p) 

Ro = NvRv = (2( r -1) /2)  2 = 2 r-1 . (5.13) 

Since for d=t=8 mod l6  the vector representation of level one gr(d) has differ- 
ent conformal dimension modulo integers than the other representations, we have 
Nv = 1. As we will see below, the matrix M has all entries except the spinor entries 
equal to 0 or 1, and in that case the sum rule (5.11) tells us that the identity and 
the vector of ~ ( d )  each branch to U -1 different irreducible representations of  the 
conformal subalgebra g. 

For the following argument it is convenient to summarize the spinor branching 
rules in (5.3) and (5.4) as 5~ = 2[r/21Xg, where [n] stands for the integer part of  

n, and where 2~s = Xs for odd d and X~ = (Xs + Xc)/2 for even d. Then by 
performing the modular transformation 7 ~ - 1/z and using the explicit form of the 
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As it turns out, the sign e is not constant on Z - ~ ( p ) ,  so that (unlike in the, otherwise 
similar, situation of (3.10)) the invariant 2 (5.15) is not positive. By the remark 
after (4.30) it follows, however, that it does commute with T 2. 

Furthermore, according to (2.9) we have 

e(0)  ( s t )p ,  A - -  ~(0) (sg)~0, A = ~(A)  (St )0  ' eA (5.16) 

for any A E Pgv, and hence the observation after (5.14) implies that e(0) = 1 and 

(Sg)p ,A  = g ( A )  ~ 2 -r/2 (5.17) 

for all A E Pgv. Combining this information with (5.14) and the fact that the full 
characters form a basis, we learn that 

~ o  ~-- ~ )~A, f v = ~ ZA . (5.18) 
AC~'-I(p) AE_y'--a(p) 

~(A)=I ~(A)---1 

This is the announced closed formula for the branching rules of the embed- 
ding g ~ ~(d img) .  Note that in terms of unshifted weights the explicit form 
of the quasi-Galois transformation reads 2p = p + p = 8A + p -- ~bA(2(A + p)) = 
2WA(A + p )  + 2gv  fiA with WA E W and fiA C L v ,  which can be rewritten as 

A = wAl(p) -- p -- 9VWAt( f iA)  = ~(p)  -- p ,  (5.19) 

where the last equality defines a unique element fi of the affine Weyl group W at 
level 9 v. Thus our result (5.18) can be rewritten as 

Y'o = ~ ZA, Xv = ~ ZA (5.20) 
AEP gv NR+ AEP gv f'lR_ 

with 
R+ := {if(p) - p I ~ E l~, sign(w) = +1 } .  (5 .21)  

The formula (5.20) has already been obtained in [10]. It is equivalent to (5.18), 
but for explicit calculations has the disadvantage that it involves the sets R+; these 
sets are infinite due to the fact that all elements of the affine Weyl group must be 
taken into account. 

Let us describe some aspects of the formula (5.18) in more detail. First, for all 
simple ~ except ~ = Ar with r even, we observe the following. A certain number 
K of representations with integer confonnal weight is mapped via the quasi-Galois 
transformation to L v with a positive sign; an equal number of representations with 
half-integer conformal weight flows to Lp with a negative sign; all other represen- 
tations as well as Lp itself flow to the boundm'y. (This has been checked explicitly 
for rank less than 9; the continuation of this specific result to higher rank is only a 
conjecture.) For Ar with r even, there are two differences with respect to the fore- 
going. First of all the numbers K and K' of fields with integral and half-integral 
conformal weight, respectively, that flow to L o are different, and secondly Lp does 
not flow to the boundary, but to itself. In this case d = r ( r  + 2), which is a multiple 
of 8, implying that the s spinor has integral or half-integral conformal weight. 
The sign associated with the flow of L; to itself is plus or minus for these two 
cases respectively. 
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In matrix notation, we thus have 2 = / 7  + / / t ,  with 

H = 
0 0 -6" 
o o g(p)  ' 
0 0 0 

for the matrix (4.20) that underlies (4.28), and hence 

(5.22) 

2= -E E 0 (5.23) 
0 0 K + K  l " 

0 0 0 

Here the third column/row corresponds to Lp, the first one to all K fields with 
integral conformal weight which flow to Lp under the quasi-Galois transformation, 
the second to the K I fields with half-integral weight flowing to  Lp, and the fourth to 
all remaining fields. The symbol 6 + stands for a K, respectively K' ,  component vector 
with all entries equal to 1, and E = 6~| 6 "t denotes the matrix of appropriate size 
(i.e., K • K , K  x K I , K  ~ • K,  and K '  • K' ,  respectively) each of whose entries is 
equal to 1; the O's indicate matrices of  zeroes of the proper size. Thus in particular 
for all cases except Ar with even rank, (5.23) can also be written as 

2 = E 0 (5.24) 
0 2K 

0 0 

with all matrices E of  size K • K. Also recall that if  Lp flows to the boundary, 
then g(p) = 0 so that the entry/7p, p of the matrix (5.22) vanishes. Further, if  d is 
a multiple of  8, then not only the matrix (5.23), but also 

E -E e(p)e ! )  
Z' - E  E - e ( p ) g  (5.25) := 2 + e(p)2 = e(p)U -e(p)# K + K'  + 2g2(p) 

0 0 0 

commutes with both S and T 2. 
These results can be related to the conformal embedding invariant in the fol- 

lowing way. Consider first the case of even d. The diagonal g'6(d) invariant can be 
written in terms of Jacobi theta fimctions and the Dedekind eta function, using 

1 ~-d/2 (Ad/2 od/2 ) ~gv 1 ,~--d/2[ od/2 od/2 ) 

f s  = ~1 'l'~-dl2[od/2kV 2 -1- id/2of/2) , Xc = ~l"--d/~iod/2,t \ 2 -- id/2od/2) , (5.26) 

where the arguments ~ and z are suppressed ((5.26) reflects the possible description 
of the ~ ( d )  theory by free fermions). We are only considering Virasoro specialized 
characters here, i.e. these functions are in fact Oi(z = 0, r). Since 01(z = 0, ~) = 0, in 
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this setting the partition function (5.1) reads ~eso(d)= �89 ]04]~/+ 1O2]d]. 
This is modular invariant because S interchanges 04 and 03, while T interchanges 
04 and 02, and all overall factors cancel. 

This diagonal partition function is however not the one we obtain from quasi- 
Galois transformations. Using the modular transformation properties of the 
0-functions one can write down another partition function that is only invariant 
under S and T 2, namely (fixing the normalization such as to make the square of 
the identity character appear exactly once) ~so(a) = Ir/l-d/2[104l d + ]0Rid], or, re- 
expressed in terms of the ~ ( d )  characters (5.26), 

= I=o - = v l  = + IXs + = o l  2 �9 (5.27) 

Both the diagonal modular invariant (5.1) and the partition function (5.27) con- 
tain more information than one strictly gets from specialized characters; one may 
check explicitly that both are S-invariant if the spinor characters are distributed 
symmetrically, as indicated. 

If we write the matrix M corresponding to (5.27) in terms of g-representations 
we get 

Eoo -Eov 0 ~ )  

-Evo Evv 0 

~ 00 0 2r 
0 0 

( 5 . 2 8 i  

A A' The result (5.18) implies that Eoo = Eov =Evo = where (Epp,)A, A' = mp mp, .  
Evv = E, or in other words, that trio = rfiv = ft. Thus (5.28) can be identified with 
(5.24). There is also an independent consistency check of this identification. Namely, 
we find that K = 2 r- l ,  so that both mo and mv have 2 r-1 components, each equal 
to 1. Hence they do satisfy the sum rule (5.12), so this rather nontrivial requirement 
for the matrix 

0 :) 
Zc.e. := 0 U -1 (5.29) 

0 0 

to commute with S is fulfilled. The matrix (5.29) is the modular invariant that 
corresponds to the branching rules (5.18). Note that the quasi-Galois symmetries 
imply that (5.24) commutes with S and T 2, while the step from (5.24) to (5.29) 
does not follow from any symmetry we know. 

If  d is a multiple of 8, then the above argument has to be slightly extended. 
Since in this case both (5.23) and (5.25) are S-TZ-invariants, we have in addition 
to (5.29) another matrix Z~.e, and hence any physical linear combination Z(u, v) := 
u Ze.r + v Z~ .... as candidates for the conformal embedding invariant. Explicitly, the 
matrix Z~.e. reads 

E 0 (5.30) 
2~'e' := 0 2 r-1 -4-22(0) 

0 0 
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f o r d = O  m o d l 6  and 

Zct.e. :=  Ut 2r--1 3-e2(p) 

0 0 0 

(5.31) 

for d = 8 mod 16, respectively. Fortunately, it is easy to eliminate all but one o f  
the candidates, namely by imposing the "quantum dimension" sum rule 

1 
= (Sso(d))o,o = ~ (Sg)o,A (5.32) 

ACPev 

(here the summation is over all fields that are combined with the identity field). 
Inserting the ansatz Z(u, v), we find that for the case o f  Ar with even r, this yields 
the unique solution u = 0, v = 1, so that (5.30), respectively (5.31), is the correct 
solution (and we also have e 2 ( p ) =  1). In contrast, for all other cases where d is 
a multiple o f  8 (such as ~ = Es), the unique solution is given by u = 1, v = 0, 
i.e. only (5.29) survives the constraint (5.32). Thus in all cases except Ar with 
r even, the situation is the same as in the general case where d is not divisible 
by 8. 

For odd d the use o f  theta functions is somewhat awkward, but it suffices to 
observe that the matrix 

M = 1 1 (5.33) 

0 

commutes with the S-matrix 1(1, ) 
Sso(d) = ~ 1 - . (5.34) 

Written in terms of  g-characters, (5.33) becomes identical to (5.28), and the rest of  
the argument is as before. 

In the notation of  (5.15), the conformal embedding invariant (5.29) reads 

(Zc.e.)A, At = 2r--l (~A,p~At, p + ~ (~A, fl~)A',td 3- 
#,#tGz l (p)  #, #zCZ--  l(p ) 
~(#)=e(# t )= l e(#)=e(# ! )-- -- 1 

(~A,#(~AI, kd , 

(5.35) 

while (5.30) and (5.31) with e(p) = -El can be summarized as 

(Zlc.e.)A,A t = (2 r 1 + 1)bA, p(~At, p 3- ~ (~A,#bAt,# t 3- ~ (~A,#~At,# ' . 
#, #1 EZ- -  1 (p) #, #fCZ--I(p) 
e(#)=e(/)-] *(#) ~(/)= 1 

(5.36) 

(By inspection one easily verifies that these matrices commute with T, that the 
correct number dim(so(d))  - dim(~) = d(d  - 3)/2 of  spin one currents are com- 
bined with the identity field, and that the "quantum dimension" sum rule (5.32) 
is satisfied also for d not a multiple o f  8.) Note that in the summations in (5.35) 
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and (5.36) (and also in those for the branching rules (5.18) of ~eo and Y'v) the 
weight # = p does not contribute, except for Ar with even r, in which case it 
contributes to ~co (if d=-r(r+2)=O mod16) and to s (if d = 8  modl6) ,  
respectively. 

Let us finally present some examples for the explicit form of the conformal 
embedding invariants. The most interesting cases are those with exceptional ~. We 
will display the result for the algebras ~ = F4 and ~ = E6 (in the E7 and E8 cases 
the invariants require too much space, therefore they will be presented elsewhere 
[21]). The primary fields are again labeled by their unshifted highest weights. We 
find 

and 

~c.e.(F4,9) = I ( 0 ,  0, 0, 0 ) +  (0, 0, 1, 6 ) + ( 0 ,  0, 2, 1) + (0, 1, 0, 0) 

+(0 ,  1, 1, 2 ) + ( 0 ,  3, O, O) + (1, O, O, 5 ) + ( 1 ,  1, O, 4)12 
+ 1 ( 0 , 0 , 0 , 7 ) + ( 0 , 0 , 2 , 0 ) + ( 0 , 0 , 3 , 0 ) + ( 0 ,  1 ,0 ,3 )  

+(0 ,  1, O, 6 ) + ( 0 ,  2, O, 2 ) + ( 1 ,  O, O, O)+  (1, O, 1, 4)12 

+ 2  �9 12(1, 1, 1, 1)t 2 , (5.37) 

~c.e.(E6, 12) 
= I (0, 0, 0, 0, 0, 0 ) + ( 0 ,  0, 0, 0, 1 2 , 0 ) + ( 0 , 0 ,  1, 0, 0, 0 ) + ( 0 ,  0, 1 , 0 , 9 , 0 )  

+ ( 0 , 0 , 2 , 0 , 3 , 0 ) + ( 0 ,  1 , 0 , 0 , 5 , 2 ) + ( 0 ,  1, 0, 2, 1 , 0 ) + ( 0 , 2 , 0 , 0 ,  1,0) 
+ (0, 2, 0, 0, 7, 0 ) +  (1, 0, 0, 0, 7, 2 ) +  (1, 0, 0, 2, 0, 0 ) +  (1, 0, 3, 0, 1,0) 
+(1 ,  1, 1 ,0 ,3 ,  1 )+ (1 ,  1, 1, 1, 1 , 0 ) + ( 1 , 2 , 0 , 0 , 5 ,  1 ) + ( 1 , 2 , 0 ,  1, O, O) 
+(2 ,  O, O, 1,3, 1 ) + ( 2 , 0 ,  1, O, 2, 0 ) + ( 2 ,  O, 1, 0, 5, 0 ) + ( 3 ,  O, 2, 0, O, O) 
+(3 ,  O, 2, O, 3, 0 ) + ( 3 ,  O, 1, 1, 1, 1 )+ (3 ,  1 ,0 ,0 ,2 ,  1 )+ (3 ,  1,0, 1 ,3 ,0 )  
+(4 ,  O, O, 0,4, O)+ (5, O, O, 2, 1, 1 ) +  (5, O, O, 1, O, 2 ) + ( 5 ,  O, 1, O, 2, O) 

+ (7, 0, 0, 2, 0, 0) + (7, 0, 0, 0, 1, 2) + (9, 0, 1, 0, 0, 0) + (12, 0, 0, 0, 0, 0)12 
+ l (0, 0, 0, 0, 0, 1 ) + ( 0 , 0 , 0 , 0 , 6 , 3 ) + ( 0 , 0 , 0 , 1 , 1 0 , 0 ) + ( 0 , 0 , 0 , 3 , 0 , 0 )  
+ ( 0 , 0 , 4 , 0 , 0 , 0 ) + ( 0 ,  1, O, O, 8, 1 )+ (0 ,  1,0, 1, O, 0 ) + ( 0 ,  1 , 2 , 0 , 2 , 0 )  
+ (0, 2, 0, 0, 4, 2) + (0, 2, 0, 2, 0, 0) + (0, 3, 0, 0, 0, 0) + (0, 3, 0, 0, 6, 0) 
+ ( 1 , 0 , 1 , 0 , 4 , 1 ) + ( 1 , 0 , 1 ,  1 , 2 , 0 ) + ( 1 , 1 , 0 , 0 , 6 , 1 ) + ( 1 , 1 , 0 , 1 , 1 , 0 )  
+ ( 2 , 0 , 2 , 0 , 2 ,  1 ) + ( 2 , 0 , 2 ,  1 , 0 , 0 ) + ( 2 ,  1,0, 1,2, 1 ) + ( 2 , 1 ,  1,0, 1,0) 
+(2 ,  1, 1, 0, 4, 0 ) + ( 3 ,  0, 0, 0, 3, 1 )+ (3 ,  0, 0, 1, 4, 0 ) + ( 4 ,  0, 0, 2, 0, 2) 
+ ( 4 , 0 ,  1,0, 1, 1 ) + ( 4 , 0 , 1 ,  1 , 2 , 0 ) + ( 4 ,  1 , 0 , 0 , 3 , 0 ) + ( 6 , 0 , 0 , 0 , 0 , 3 )  

+ (6 ,  O, O, 1, 1, 1 ) + ( 6 ,  O, O, 3, O, O) + (8, O, O, 1, O, 1) + (10, 1, O, O, O, 0)I 2 

+ 2  �9 14(1, 1, 1, 1, 1, 1)12 . (5.38) 

These results demonstrate the power of quasi-Galois symmetries quite convincingly. 
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