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The electrodynamics of a two-dimensional gas of massless fermions in graphene is studied by
a collisionless hydrodynamic approach. A low-energy dispersion relation for the collective modes
(plasmons) is derived both in the absence and in the presence of a perpendicular magnetic field. The
results for graphene are compared to those for a standard two-dimensional gas of massive electrons.
We further compare the results within the classical hydrodynamic approach to the full quantum
mechanical calculation in the random phase approximation. The low-energy dispersion relation is
shown to be a good approximation at small wave vectors. The limitations of this approach at higher
order is also discussed.

I. INTRODUCTION

Plasmons are collective excitations of the electron liq-
uid that completely dominate its excitation spectrum at
long wavelengths.1 Although the random phase approx-
imation (RPA) is the simplest theory that can account
for them within a quantum mechanical description, plas-
mons have a classical origin and can be described qual-
itatively, at lowest order, by a proper hydrodynamical
approach.2 The screening properties of standard two-
dimensional electron gases (2DEG) of massive electrons,
with a parabolic dispersion relation, as well as their col-
lective modes, have been extensively studied.3,4

Recently, much attention has been payed to under-
standing the peculiarities of graphene plasmons.5 Al-
though graphene also supports plasmon modes with a
low-energy ω ∼ √q dispersion relation, where ω is the
energy and q the wave vector, the dependence of the dis-
persion on the electron density n is different: whereas
ω ∼ √nq for a 2DEG, the characteristic linear dispersion

relation of graphene leads to a ω ∼
√
n1/2q behavior.6–8

The particle-hole excitation spectrum, defined as the re-
gion of the ω − q space where electron-hole excitations
are possible, is also rather different in the two cases.9

When the additional effect of an external magnetic field
perpendicular to the layer is considered, new differences
between the 2DEG and graphene appear, due to the es-
sentially different Landau level quantization of the spec-
trum in the two cases.10–13

In this paper, we present a classical hydrodynamic
approximation2 to study the collective excitations in
graphene, including the effect of a finite magnetic field in
the spectrum. This classical approach gives a simple de-
scription of the origin and dispersion of plasmons, which

can be identified with longitudinal density oscillations or
sound waves in usual gases and liquids. We obtain an
approximate dispersion relation for the plasmon and for
the upper hybrid mode, which is the name of the plas-
mon dressed by the contribution of the magnetic field.
We further compare the hydrodynamic results to the full
quantum mechanical RPA approximation, and show how
the former give a reasonable approximation in the long
wavelength limit. Finally, we discuss the limitations of
the classical hydrodynamic approximation, and compare
our results for relativistic fermions in graphene to the
well-studied case of massive electrons in a 2DEG.

We note that hydrodynamics has already been ap-
plied to graphene either in the quantum critical regime
of high temperature and low doping of a clean system14

or to describe transport in a disordered and doped
system.15,16 Very recently, the renormalization due to
electron-electron interactions of the classical plasmon
mode in graphene as well as of the upper hybrid mode
has been investigated, within the framework of Landau’s
Fermi-liquid theory.17 As a consequence of the lack of
Kohn’s theorem in graphene,18 electron-electron interac-
tions renormalize the cyclotron frequency.10,12,18,19

II. HYDRODYNAMICAL THEORY OF LINEAR
RESPONSE

Hydrodynamical theory describes electronic motion
in terms of two dynamical variables, namely the elec-
tron density, n(r, t) and the electron velocity v(r, t) =
(vx, vy, 0). At zero temperature T = 0 (in the absence
of heat current) the charge and momentum currents are
proportional. Euler’s and the continuity equations read2
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α
d

dt

(
εF
v2

F

J(r, t)

)
= e∇∇∇P (r, t) + en(r, t)∇∇∇

∫
dr′

e2

|r− r′|
[n(r′, t)− n0]− eJ(r, t)×B, (1)

∂n(r, t)

∂t
=

1

e
∇∇∇ · [J(r, t)], (2)

where εF is the Fermi energy, e is the electron charge,
J(r, t) is the charge current (see also Appendix A), P (r, t)
is the pressure in the layer and B = (0, 0, B) is the mag-
netic field perpendicular to the plane. Furthermore, the
coefficient α is related to the dispersion relation, ε ∝ kα,
which we consider here. This exponent affects the density
of states

ρ(ε) ∝ εd/α−1, (3)

where d is the spatial dimension of the electron system,
and it allows us to discuss the 2DEG with a parabolic
band dispersion (α = 2, ε = k2/2m) on an equal footing
with graphene (α = 1, ε = vF k). We take ~ ≡ 1 from
now on. Indeed, the quantity intervening on the left hand
side of (1) is thus the cyclotron mass,

mc = α
εF
v2

F

. (4)

We have defined the Fermi velocity as vF = ∂ε
∂k |F , in

terms of the (massless or massive) electronic dispersion
relation ε(k). The second term on the right hand side of
Eq. (1) represents the long-range Coulomb interaction
among the carriers, and the third term is the Lorentz
force term, which accounts for the presence of an external
magnetic field. The electron density can be decomposed
as

n(r, t) ≡ n0 + δn(r, t) (5)

where n0 is the mean average density of the system
(which is assumed to be neutralized by a rigid uniform
background), and δn(r, t) is the electron-density fluctua-
tion. Rigorously, these equations must be combined with
Maxwell’s equations. However we neglect retardation ef-
fects as the speed of light c is much larger than the Fermi
velocity vF ≈ c/300. The charge current is defined, in
terms of the electron density and velocity, as

J(r, t) = −en(r, t)v(r, t). (6)

We may further simplify the problem by considering
the linear response of the initially stationary system to
an applied perturbation. Notice that within this approxi-
mation, the velocity v, and the electric (E) and magnetic
(B) fields are of first order. Therefore we approximate

v̇ =
∂v

∂t
+ (v · ∇∇∇)v ' ∂v

∂t
(7)

and

∂(εFJ/v
2
F)

∂t
' εF
v2

F

∂J

∂t
(8)

where we have taken the Fermi energy to be ap-
proximately time- and position-independent. In order
to related the pressure to the electronic density, we
make use of the equation of states, which can be ob-
tained from P (r, t) = n(r, t)(εF − 〈ε〉), where 〈ε〉 =∫ εF

0
dε ερ(ε)/

∫ εF
0
dε ρ(ε), in terms of the density of states

(3). This yields the general T = 0 equation of states

P (r, t) =
1

1 + d/α
n(r, t)εF. (9)

Notice that the Fermi energy εF is itself a function of den-
sity, εF ∝ nα/d, as one may see from Eq. (3). Whereas
for the 2DEG, this yields the usual relation P = nεF/2,
where εF = k2

F/2m = πn/m, one obtains for the elec-
tronic quantum pressure in graphene

P (r, t) =
1

3
vF

√
πn3/2(r, t), (10)

in terms of the density alone, where we have used εF =
vFkF = vF

√
πn. One thus obtains for the pressure gradi-

ent in Eq. (1)

∇∇∇P (r, t) =
∂P

∂n
∇∇∇δn(r, t)

' α

d
εF∇∇∇δn(r, t), (11)

where the approximation in the second line consists of
considering an average Fermi energy that is constant in
space and time, that is we consider only first-order terms
in δn(r, t).

This allows us to write the linearized equations of mo-
tion (1)-(2) as

α
εF
v2

F

∂J(r, t)

∂t
=

α

d
eεF∇∇∇δn(r, t) + en0∇∇∇

∫
dr′

e2

|r− r′|
δn(r′, t)

−eJ(r, t)×B, (12)

∂δn(r, t)

∂t
=

1

e
∇∇∇ · J(r, t) (13)

Moreover, the two-dimensional electric field is deter-
mined by the scalar and vector fields

E(r, t) = −∇∇∇φ(r, t)− 1

c

∂A

∂t
(14)

where A is the vector potential and φ(r, t) = φind(r, t) is
the induced potential caused by the excess or deficit of
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carriers. Furthermore, the electric potential must satisfy
the usual wave equation[

∇2 − 1

c2
∂2

∂t2

]
φ(r, t) = −4πρ(r, t). (15)

Then, taking into account that ρ(r, t) = ρind(r, t) =
−eδn(r, t) and neglecting retardation effects we can write
the Laplace equation as

∇2φ(r, t) = 4πeδn(r, t) (16)

which can be expressed, after a Fourier transformation,
as

− q2φ(q, ω) = 4πeδn(q, ω). (17)

Substitution of Eq. (17) in Eq. (2) yields

− iωα εF
v2

F

J(q, ω) = i
α

d
eεFqδn(q, ω) + ien0qδn(q, ω)v2D(q)

−eJ(q, ω)×B (18)

−iωδn(q, ω) =
1

e
iq · J(q, ω) (19)

where

v2D(q) =
2πe2

εbq
(20)

is the 2D Fourier transformation of the three-dimensional
Coulomb interaction, and εb is the background dielectric
constant. Notice that, using Eq. (17), we can further
write

− iqφ(q, ω) = i
q

q2
4πeδn(q, ω) = E(q, ω) (21)

which allows us to express Eqs. (18)-(19) in the more
convenient form:

− iαω εF
v2

F

J(q, ω) = i
α

d
eεFqδn(q, ω) + q

n0e
2

2εb
E(q, ω)

−eJ(q, ω)×B (22)

−iωδn(q, ω) =
1

e
iq · J(q, ω) (23)

Without loss of generality we can choose q ≡ (q, 0),
which implies that Ey(q, ω) = 0. Therefore we have,
taking into account that J×B = B(Jy,−Jx), that

− iαω εF
v2

F

Jx(q, ω) = iq
α

d
eεFδn(q, ω) + q

n0e
2

2εb
Ex(q, ω)

−eBJy(q, ω) (24)

−iαω εF
v2

F

Jy(q, ω) = +eBJx(q, ω) (25)

−ωδn(q, ω) =
1

e
qJx(q, ω). (26)

The above set of equations allows us to write

Jx(q, ω)

[
ω2 − 1

d
v2

Fq
2 − ωc(εF)2

]
= iωq

n0e
2v2

F

2αεFεb
Ex(q, ω)

(27)
where we have introduced the energy (or carrier density)
dependent cyclotron frequency

ωc(εF) =
eBv2

F

αεF
=
eB

mc
, (28)

in terms of the cyclotron mass (4). By using the relations
between J and E through the conductivity tensor σσσ, Jx =
σxxEx and Jy = σxyEx, then we can finally write the
longitudinal and transverse (Hall) conductivities as

σxx =
i n0e

2

2εbmc
ωq

ω2 − v2
Fq

2/d− ωc(εF)2
(29)

σxy =

n0e
2

2εbmc
ωc(εF)q

ω2 − v2
Fq

2/d− ωc(εF)2
(30)

Notice that in the B → 0 limit the transverse conductiv-
ity σxy vanishes, as it should.

We now study the upper-hybrid (UH) mode, which is
the classical 2D plasmon collective excitation dressed by
the contribution due to the external magnetic field. Its
dispersion relation is found by looking for the zeroes of
the dielectric function

εxx = 1 +
4πi

εbω
σxx (31)

from which we obtain our final result

ωuh(q) =
√
ω2
c + ω2

p,cl + ω2
s

=

√(
eB

mc

)2

+
2πe2n0

εbmc
q + v2

sq
2. (32)

In the above equation we have introduced the (first)
sound frequency ωs = vsq and velocity vs, which is writ-
ten in terms of the Fermi velocity as vs = vF/

√
d and that

dominates the quadratic term arising from the quantum
pressure of the gas. The sound velocity is thus indepen-
dent of the particular band dispersion (that is indepen-
dent of α) and depends solely on the dimensionality. The
information about the band dispersion is encoded in the
first and second term, namely in the cyclotron mass –
whereas it is independent of the density in the case of
the 2DEG, it scales as

√
n0 in graphene, as may be seen

from Eq. (4). To distinguish between the B = 0 and the
B 6= 0 contributions, we can write Eq. (32) as

ω2
uh(q) = ω2

c + ω2
p(q), (33)

where the cyclotron frequency makes this mode gapped
when an external magnetic field is applied perpendicular
to the layer, and the approximate expression for the zero-
field plasmon dispersion ωp(q) is

ωp(q) '
√
ω2
p,cl + γv2

Fq
2, (34)
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where

ω2
p,cl =

2πe2n0

εbmc
q (35)

is the (square of the) classical plasma frequency. Notice
that, both for α = 1 (graphene) and α = 2 (2DEG), one
finds ω2

p,cl = 2e2εFq/εb.
26 Furthermore, we have written

the corrective term generally in terms of a parameter γ,
in Eq. (34) to prepare the discussion below about the
limits of the collisionless hydrodynamic approach, which
has given γ = 1/2 for both graphene and the 2DEG.

For graphene, the dispersion relation (32) is also con-
tained in the work by Shizuya.11 He derived an effective
long wavelength gauge theory for graphene in a perpen-
dicular magnetic field. To see the connection, we pro-
vide the following dictionary between his notations and
ours: ωeff ≈ eBv2

F/εF is our cyclotron frequency ωc when
the Landau-level filling factor ν � 1, αm/αe is given by
v2
s = v2

F/2 in terms of the Fermi velocity, ρ̄ is the equilib-

rium density n0 and l is the magnetic length lB = 1/
√
eB.

Then the pole of the propagator (3.4) in his paper is ex-
actly at the frequency of the upper-hybrid mode that
we obtained above. The frequency of this mode in the
q → 0 limit is given in his equation (3.5) and reads
ωuh ≈ ωc + 1

2 [l2Bn0v
2D(q) + v2

F/2ωc]q
2 in agreement with

Eq. (32).

III. DISCUSSION

In this section we comment on the different regimes
included in the theory. We also compare the analytical
results obtained in Sec. II to the numerical solution of
the quantum polarization function within the RPA. We
further discuss the B = 0 and B 6= 0 cases, and comment
on the limitations of the hydrodynamic theory.

A. Validity of collisionless hydrodynamics

Hydrodynamics is usually valid in the low-frequency
ωτ � 1 and long-wavelength qvF τ � 1 limits (known
as the hydrodynamic limit), where 1/τ is the collision
rate between carriers. Here we study a clean, doped and
degenerate graphene sample, which behaves as a two-
dimensional Fermi liquid.20 The electron-electron colli-
sion rate is 1/τee ∼ k2

BT
2/εF following Landau’s famous

phase space argument. At low T and close to the Fermi
surface, τee → 0 and therefore ωτee � 1, which is the col-
lisionless limit, where hydrodynamics is expected to fail.
The standard approach is to use Landau’s kinetic equa-
tion for a Fermi liquid.21 Here we follow a phenomenolog-
ical approach pioneered by F. Bloch,22 which consists of
using hydrodynamics heuristically also in the collisionless
regime of a Fermi liquid. This can not be microscopically
and quantitatively exact, but is usually qualitatively cor-
rect to describe collective modes such as the plasmon.2

However, as shown by I. Tokatly and O. Pankratov23 and
others [see e. g. section 5.3.3 of Ref. 24], hydrodynamics-
like equations can nevertheless be derived for a Fermi
liquid in the collisionless regime. These are more compli-
cated than Bloch’s collisionless hydrodynamics, as they
include a pressure tensor that in addition to the diago-
nal pressure also contains an off-diagonal component de-
scribing deformations of the shape of the Fermi surface
(shear-like or viscosity-like term). Such terms account for
the zero sound of a Fermi liquid, for example.21 Here, we
rely on the simple collisionless hydrodynamics of Bloch,
knowing its limitations and in particular that the sound
velocity appearing in the plasmon dispersion and that in
the upper hybrid mode, if there is a magnetic field, is
underestimated by the neglect of Fermi surface deforma-
tions.

In collisionless hydrodynamics, the specificity of
graphene compared to a usual 2DEG only enters in the
replacements of the mass m by the cyclotron mass εF/v

2
F,

of the equation of states P = nεF/2 ∝ n2 by P =
nεF/3 ∝ n3/2, and of the Fermi energy εF = k2

F/2m ∝ n
by εF = vFkF ∝

√
n. These three modifications only de-

pend on the dispersion relation in zero magnetic field. As
we have seen in the previous section, one obtains never-
theless for both graphene and the 2DEG the same coef-
ficient γ = 1/2 describing the hydrostatic pressure of the
electron gas in the collisionless limit. In other words, only
the linear spectrum of graphene is taken into account but
not any chirality effects coming from the eigenvectors of
the graphene Hamiltonian. This is an approximation,
which is certainly wrong when approaching the neutral-
ity point.

B. Comparison with RPA

A benchmark for the validity of the above classical hy-
drodynamic approach is the comparison with the plas-
mon obtained from the quantum RPA method. In gen-
eral, the dispersion relation of collective plasmon modes
can be calculated from the poles of the interacting polar-
ization function.4 In Fig. 1 we show density plots of the
polarization function, ΠRPA(q, ω), within the RPA,9 as
well as the analytical solution of the upper hybrid mode
dispersion relation Eq. 32 (dotted line) and the analyt-
ical approximation for the dispersion within RPA up to
second order in q (dashed lines). Fig. 1(a) corresponds to
the graphene spectrum at B = 0. As expected, Eq. (32)
properly reproduces the exact numerical RPA results at
small wave vectors. Something similar is obtained for
the B 6= 0 case of Fig. 1(c), for which the analytical
approximation fit properly the poles of ΠRPA(q, ω) cor-
responding to the upper hybrid mode. However, the hy-
drodynamic solution, as given by the dotted black line,
deviates from the numerical RPA solution at larger wave
vectors.

Indeed, the RPA does not only take into account the
particular deformation of the Fermi surface due to den-
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a

d

b

c

FIG. 1: (Color online) (a) Polarization spectrum of graphene within the RPA at B = 0, and fitting of the plasmon mode to
the dispersion relation Eq. (34). (b) Same as (a) but for a 2DEG of massive electrons. (c) Same as (a) but in the presence
of a strong magnetic field applied perpendicular to the graphene layer. The fitting of the upper hybrid mode is done using
Eq. (32). (d) Same as (c) but for an standard 2DEG. In all the plots, the dotted line is the fitting to the hydrodynamical
results Eq. (32)-(34) with γ = 1/2, whereas the dashed line represents the fitting using the coefficient of the q2 term γ = 3/4,
as obtained from expanding the 2DEG RPA analytical result up to q2 order. See discussion in the text. The strength of the
electron-electron interaction is plots (a) and (c) is rs = 1, whereas rs = 3 for plots (b) and (d).

sity fluctuation, which correspond to the hyrdostatic
pressure of the quantum gas, but also other non-local cor-
rections. As such one may invoke the volume-preserving
shear deformation of the Fermi surface mentioned above.4

This is a well known problem of the hydrodynamic ap-
proach and it is due to the local equilibrium assumption,
which is inaccurate for plasmon modes.4 In fact, each
plasmon oscillations involves a change in the shape of
the Fermi surface, which costs additional kinetic energy.
Furthermore, one needs to take into account quantum
corrections due to the wave-function overlap between the
electron-hole pairs intervening in the plasmonic excita-
tions. The latter gives rise namely to a particular chiral-
ity factor in the polarization function of graphene6–9 that
reflects, among other effects, the absence of backscatter-

ing. A small-wavevector expansion beyond the classi-
cal term of the plasmon pole in the RPA polarization
function yields a different result for the 2DEG, namely
γ = 3/4, that is larger than the result obtained from
the hydrodynamic approach, as compared to graphene,
where one finds a correction γ = 3/4 − r2

s ,
25 where

rs = e2/εbvF ' 2.2/εb is the graphene fine-structure con-
stant. However, in the case of graphene, this correction
is hardly visible for physically relevant values of rs and
becomes important only for rs � 1, as we have checked
(results not shown). In the present case of Fig. 1 c, where
we have plotted the imaginary part of the B 6= 0 RPA
polarizability for a value of rs = 1, we have used simply
γ = 3/4 (for the dashed line) as a fitting parameter.

Apart from the upper hybrid mode, in the density plot
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of Fig. 1(c) we can observe an additional set of diagonal
lines of strong spectral weight. These are the so called
linear magneto-plasmons, and they have a fully quantum
mechanical origin.9,13 The peculiar Landau level quan-
tization of graphene into non-equidistant Landau lev-
els permits an increasing number of inter-LL excitations
and an enhancement of the LL mixing effect, due to the
stacking of different Landau levels and the possibility of
having transitions from the filled valence band. Those
combined effects lead to a particular excitation spectrum
of graphene as compared to that of the 2DEG with a
parabolic band dispersion.9 However, as we have men-
tioned, this is an intrinsic quantum-mechanical effect due
to the overlap between the wave functions of the interven-
ing electrons and holes and therefore, it is not captured
by the semiclassical approach of Sec. II.

We finish by highlighting some aspects of the spec-
trum for a standard 2DEG of massive electrons. Fig.
1(b) shows the spectrum at B = 0 from the exact RPA
solution (density plot) and the analytical approximations
within the hydrodynamic (dotted) and the RPA (dashed
lines) approximations.9 In this case, the parabolic dis-
persion of massive single-band electrons leads to a dif-
ferent shape of the excitation spectrum. As before, the
plasmon dispersion is well fitted, at small wave-vectors,
by the analytical approximations. If a quantizing mag-
netic field is applied perpendicular to the 2DEG, then
a set of equidistant LLs appears in the spectrum, sepa-
rated by the cyclotron frequency ωc = eB/m, where m is
the band mass, which coincides with the cyclotron mass
(4) for a parabolic dispersion relation. In this case, the
spectrum is discretized into weakly dispersing horizontal
lines placed at energies proportional to ωc, clearly seen
in Fig. 1(d). As for the case of graphene, an upper hy-
brid mode appears also in the spectrum, which can be
approximately described, in the long wavelength limit,
by the analytical approximations discussed above.

IV. CONCLUSIONS

In summary, we have used a simple collisionless hy-
drodynamic approach to study the small-wavevector col-

lective modes of graphene and related materials, in the
presence of a magnetic field perpendicular to the layer.
The dispersion relation for the modes obtained this way
has been compared to the quantum RPA result. We have
further discussed the cases at zero field, as well as the
more standard case of a 2DEG of massive electrons with
a parabolic band dispersion. We show that, whereas the
two approximations coincide at the leading order, the hy-
drodynamic approach fails to capture the correct behav-
ior at q2 order due to the local equilibrium assumption
of this approximation.
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Appendix A: Alternative derivation of the
conservation laws for graphene

We start from Bloch’s hydrodynamics equations

k̇ = −∇
∇∇P (r, t)

n(r, t)
− eE− e

c
v(r, t)×B, (A1)

∂n(r, t)

∂t
= −∇∇∇ · [n(r, t)v(r, t)], (A2)

which can be expressed in terms of the Fermi velocity
and the Fermi energy εF as

vk =∇∇∇kεk = vF
k

|k|
(A3)

Taking into account that εF = vFkF we can express the
wavevector as

k =
vk

vF
|k| ' vk

vF
kF = mcvk (A4)

where mc ≡ kF/vF = εF/v
2
F is the density dependent

cyclotron mass of graphene. This allows us to write the
first term of Eq. (1) in the present form.
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