606 research outputs found

    Idiopathic orthostatic hypotension: Recent data (eleven cases) and review of the literature

    Get PDF
    Eight cases of Shy-Drager syndrome and three of Bradbury-Eggleston idiopathic orthostatic hypotension were examined. In all cases, examination of circulatory reflexes showed major dysfunction of the sympathetic vasoconstrictor system. Anomalies in the vagal cardiomoderator system were less constant. Normal urinary elimination of catecholamines was recorded daily. Characteristically, no elevation of blood or urine norepinephrine levels were found in orthostatism. Insulin hypoglycemia normally raised urinary adrenalin elimination in three of ten patients. Plasma dopa-beta-hydroxylase activity was normal. Renin-angiotensin-aldosterone system showed variable activity at basal state but usually rose during orthostatism. On the average, very low homovanillic acid levels were found in cerebrospinal fluid before and after probenecid; hydroxyindolacetic acid was normal. Cerebral autoregulation had deteriorated in two of four cases. Physiopathologically the two clinical types are indistinguishable with or without central neurological signs

    Modeling the influence of Twitter in reducing and increasing the spread of influenza epidemics

    Get PDF
    In this paper we present compartmentalized neuron arraying (CNA) microfluidic circuits for the preparation of neuronal networks using minimal cellular inputs (10–100-fold less than existing systems). The approach combines the benefits of microfluidics for precision single cell handling with biomaterial patterning for the long term maintenance of neuronal arrangements. A differential flow principle was used for cell metering and loading along linear arrays. An innovative water masking technique was developed for the inclusion of aligned biomaterial patterns within the microfluidic environment. For patterning primary neurons the technique involved the use of meniscus-pinning micropillars to align a water mask for plasma stencilling a poly-amine coating. The approach was extended for patterning the human SH-SY5Y neuroblastoma cell line using a poly(ethylene glycol) (PEG) back-fill and for dopaminergic LUHMES neuronal precursors by the further addition of a fibronectin coating. The patterning efficiency Epatt was >75% during lengthy in chip culture, with ~85% of the outgrowth channels occupied by neurites. Neurons were also cultured in next generation circuits which enable neurite guidance into all outgrowth channels for the formation of extensive inter-compartment networks. Fluidic isolation protocols were developed for the rapid and sustained treatment of the different cellular and sub-cellular compartments. In summary, this research demonstrates widely applicable microfluidic methods for the construction of compartmentalized brain models with single cell precision. These minimalistic ex vivo tissue constructs pave the way for high throughput experimentation to gain deeper insights into pathological processes such as Alzheimer and Parkinson Diseases, as well as neuronal development and function in health

    Reconstruction 3D en tomographie par rayonnement synchrotron coherent

    Get PDF
    Un système de microtomographie 3D utilisant le rayonnement synchrotron très cohérent de l'ESRF de Grenoble, a été développé. Nous discutons ici les spécificités de ce type d'imagerie tomographique. En effet, la cohérence spatiale de la source de rayons X de l'ESRF, engendre outre les effets d'atténuation conventionnels, des phénomènes dits de « contraste de phase ». Ceux-ci sont liés à des interférences entre les ondes diffractées par l'échantillon après propagation, lorsque 1' échantillon est placé à une distance non nulle du détecteur. Nous montrons que sous certaines conditions, les algorithmes de reconstruction conventionnels sont utilisables. L'image reconstruite possède alors une contribution liée à l'atténuation, et une contribution liée aux brusques variations dans l'indice de réfraction

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    © 2019, The Author(s). Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Slide Attacks on a Class of Hash Functions

    Get PDF
    Abstract. This paper studies the application of slide attacks to hash functions. Slide attacks have mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery attacks. In other cases, we can at least distinguish a given hash function from a random oracle. To illustrate our results, we describe attacks against the Grindahl-256 and Grindahl-512 hash functions. To the best of our knowledge, this is the first cryptanalytic result on Grindahl-512. Furthermore, we point out a slide-based distinguisher attack on a slightly modified version of RadioGatĂşn. We finally discuss simple countermeasures as a defense against slide attacks. Key words: slide attacks, hash function, Grindahl, RadioGatĂşn, MAC, sponge function.

    Cryptanalysis of Reduced NORX

    Get PDF
    NORX is a second round candidate of the ongoing CAESAR competition for authenticated encryption. It is a nonce based authenticated encryption scheme based on the sponge construction. Its two variants denoted by NORX32 and NORX64 provide a security level of 128 and 256 bits, respectively. In this paper, we present a state/key recovery attack for both variants with the number of rounds of the core permutation reduced to 2 (out of 4) rounds. The time complexity of the attack for NORX32 and NORX64 is 21192^{119} and 22342^{234} respectively, while the data complexity is negligible. Furthermore, we show a state recovery attack against NORX in the parallel mode using an internal differential attack for 2 rounds of the permutation. The data, time and memory complexities of the attack for NORX32 are 27.32^{7.3}, 2124.32^{124.3} and 21152^{115} respectively and for NORX64 are 26.22^{6.2}, 2232.82^{232.8} and 22252^{225} respectively. Finally, we present a practical distinguisher for the keystream of NORX64 based on two rounds of the permutation in the parallel mode using an internal differential-linear attack. To the best of our knowledge, our results are the best known results for NORX in nonce respecting manner

    I-CARE, a European Prospective Cohort Study Assessing Safety and Effectiveness of Biologics in Inflammatory Bowel Disease

    Get PDF
    Background and aims: There is a need to evaluate the benefit-risk ratio of current therapies in inflammatory bowel disease (IBD) patients to provide the best quality of care. The primary objective of I-CARE (IBD Cancer and serious infections in Europe) was to assess prospectively safety concerns in IBD, with specific focus on the risk of cancer/lymphoma and serious infections in patients treated with anti-tumor necrosis factor and other biologic monotherapy as well as in combination with immunomodulators.. Methods: I-CARE was designed as a European prospective longitudinal observational multicenter cohort study to include patients with a diagnosis of Crohn's disease, ulcerative colitis, or IBD unclassified established at least 3 months prior to enrollment. Results: A total of 10,206 patients were enrolled between March 2016 and April 2019, including 6169 (60.4%) patients with Crohn's disease, 3853 (37.8%) with ulcerative colitis, and 184 (1.8%) with a diagnosis of IBD unclassified. Thirty-two percent of patients were receiving azathioprine/thiopurines, 4.6% 6-mercaptopurine, and 3.2% methotrexate at study entry. At inclusion, 47.3% of patients were treated with an anti-tumor necrosis factor agent, 8.8% with vedolizumab, and 3.4% with ustekinumab. Roughly one-quarter of patients (26.8%) underwent prior IBD-related surgery. Sixty-six percent of patients had been previously treated with systemic steroids. Three percent of patients had a medical history of cancer prior to inclusion and 1.1% had a history of colonic, esophageal, or uterine cervix high-grade dysplasia.. Conclusions: I-CARE is an ongoing investigator-initiated observational European prospective cohort study that will provide unique information on the long-term benefits and risks of biological therapies in IBD patients

    The what and why of perceptual asymmetries in the visual domain

    Get PDF
    Perceptual asymmetry is one of the most important characteristics of our visual functioning. We carefully reviewed the scientific literature in order to examine such asymmetries, separating them into two major categories: within-visual field asymmetries and between-visual field asymmetries. We explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; and in terms of underlying mechanisms, the why of the asymmetries. Tthe within-visual field asymmetries are fundamental to orientation, motion direction, and spatial frequency processing. between-visual field asymmetries have been reported for a wide range of perceptual phenomena. foveal dominance over the periphery, in particular, has been prominent for visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds true for object or face recognition and reading performance. upper-lower visual field asymmetries in favour of the lower have been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orientation, hue and motion processing. Iin contrast, the upper field advantages have been seen in visual search, apparent size, and object recognition tasks. left-right visual field asymmetries include the left field dominance in spatial (e.g., orientation) processing and the right field dominance in non-spatial (e.g., temporal) processing. left field is also better at low spatial frequency or global and coordinate spatial processing, whereas the right field is better at high spatial frequency or local and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, the primary why, but can be also susceptible to visual experience, the critical why (promotes or blocks the asymmetries by altering neural functions)

    A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies

    Get PDF
    A. Palotie on työryhmän Int IBD Genetics Consortium jäsen.One goal of human genetics is to understand the genetic basis of disease, a challenge for diseases of complex inheritance because risk alleles are few relative to the vast set of benign variants. Risk variants are often sought by association studies in which allele frequencies in case subjects are contrasted with those from population-based samples used as control subjects. In an ideal world we would know population-level allele frequencies, releasing researchers to focus on case subjects. We argue this ideal is possible, at least theoretically, and we outline a path to achieving it in reality. If such a resource were to exist, it would yield ample savings and would facilitate the effective use of data repositories by removing administrative and technical barriers. We call this concept the Universal Control Repository Network (UNICORN), a means to perform association analyses without necessitating direct access to individual-level control data. Our approach to UNICORN uses existing genetic resources and various statistical tools to analyze these data, including hierarchical clustering with spectral analysis of ancestry; and empirical Bayesian analysis along with Gaussian spatial processes to estimate ancestry-specific allele frequencies. We demonstrate our approach using tens of thousands of control subjects from studies of Crohn disease, showing how it controls false positives, provides power similar to that achieved when all control data are directly accessible, and enhances power when control data are limiting or even imperfectly matched ancestrally. These results highlight how UNICORN can enable reliable, powerful, and convenient genetic association analyses without access to the individual-level data.Peer reviewe
    • …
    corecore