6,020 research outputs found

    ALTERNATIVE FUTURES OF RURAL AREAS IN THE EU: A COMPARATIVE ANALYSIS OF SCENARIO STUDIES

    Get PDF
    What does rural Europe look like in 2030? Is agriculture still the main land user? In recent years, studies such as ESPON, Eururalis, SCENAR2020, SENSOR, SEAMLESS and PRELUDE have tried to address these questions. These studies resulted in a number of alternative futures of rural areas in the EU. In this paper a comparative analysis of these scenario studies is made in order to explore differences and similarities in the scenarios and alternative futures of rural areas in the EU. For this purpose, we designed a scheme for assessing the properties of the various scenarios and a scheme for a systematic description of the rural futures according to the scenarios. It appears that most scenario studies use a baseline scenario and a set of alternative scenarios with different degrees of policy regulation. Agriculture will continue to be a main land user in 2030, although some land abandonment will take place.Rural Europe, scenario studies, alternative futures, land-use, territorial disparities, Agribusiness, Community/Rural/Urban Development, Research Methods/ Statistical Methods,

    Time-resolved Adaptive Direct FEM Simulation of High-lift Aircraft Configurations

    Get PDF
    Our simulation methodology is referred to as Direct FEM Simulation (DFS), or General Galerkin (G2) and uses a finite element method (FEM) with piecewise linear approximation in space and time, and with numerical stabilization in the form of a weighted least squares method based on the residual. The incompressible Navier-Stokes Equations (NSE) are discretized directly, without applying any filter. Thus, the method does not result in Large Eddy Simulation (LES) filtered solutions, but is instead an approximation of a weak solution satisfying the weak form of the NSE. In G2 we have a posteriori error estimates for quantities of interest that can be expressed as functionals of a weak solution. These a posteriori error estimates, which form the basis for our adaptive mesh refinement algorithm, are based on the solution of an associated adjoint problem with a goal quantity (the aerodynamic forces in this work) as data, similarly to an optimal control problem. We provide references to related work below. The methodology and software have been previously validated for a number of turbulent flow benchmark problems, including one of the HiLiftPW-2 high Reynolds number cases. The DFS method is implemented in the Unicorn solver, which uses the open source software framework FEniCS-HPC, designed for automated solution of partial differential equations on massively parallel architectures using the FEM. In this chapter we present adaptive results from the Third AIAA High Lift Prediction Workshop in Denver, Colorado based on our DFS methodology and Unicorn/FEniCS-HPC software. We show that the methodology quantitavely and qualitatively captures the main features of the experiment - aerodynamic forces and the stall mechanism with a novel numerical tripping, with a much coarser mesh resolution and cheaper computational cost than the standard in the field

    A posteriori error analysis of a stabilized mixed FEM for convectuion-diffusion problems

    Get PDF
    We present an augmented dual-mixed variational formulation for a linear convection-diffusion equation with homogeneous Dirichlet boundary conditions. The approach is based on the addition of suitable least squares type terms. We prove that for appropriate values of the stabilization parameters, that depend on the diffusion coefficient and the magnitude of the convective velocity, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds. In particular, we derive the rate of convergence when the flux and the concentration are approximated, respectively, by Raviart-Thomas and continuous piecewise polynomials. In addition, we introduce a simple a posteriori error estimator which is reliable and locally efficient. Finally, we provide numerical experiments that illustrate the behavior of the method

    Considerations for an Ac Dipole for the LHC

    Get PDF
    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc

    Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first principle theory

    Full text link
    The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.Comment: 12 pages, 7 figures, 1 tabl

    Electronic structure and chemical bonding of nc-TiC/a-C nanocomposites

    Full text link
    The electronic structure of nanocrystalline (nc-) TiC/amorphous C nanocomposites has been investigated by soft x-ray absorption and emission spectroscopy. The measured spectra at the Ti 2p and C 1s thresholds of the nanocomposites are compared to those of Ti metal and amorphous C. The corresponding intensities of the electronic states for the valence and conduction bands in the nanocomposites are shown to strongly depend on the TiC carbide grain size. An increased charge-transfer between the Ti 3d-eg states and the C 2p states has been identified as the grain size decreases, causing an increased ionicity of the TiC nanocrystallites. It is suggested that the charge-transfer occurs at the interface between the nanocrystalline TiC and the amorphous C matrix and represents an interface bonding which may be essential for the understanding of the properties of nc-TiC/amorphous C and similar nanocomposites.Comment: 13 pages, 6 figures, 1 table; http://link.aps.org/doi/10.1103/PhysRevB.80.23510

    Cause of the fragile-to-strong transition observed in water confined in C-S-H gel

    Get PDF
    In this study, the rotational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel with a water content of 22 wt.% was studied by broadband dielectric spectroscopy in broad temperature (110-300 K) and frequency (10(-1)-10(8) Hz) ranges. The C-S-H gel was used as a 3D confining system for investigating the possible existence of a fragile-to-strong transition for water around 220 K. Such transition was observed at 220 K in a previous study [Y. Zhang, M. Lagi, F. Ridi, E. Fratini, P. Baglioni, E. Mamontov and S. H. Chen, J. Phys.: Condens. Matter 20, 502101 (2008)] on a similar system, and it was there associated with a hidden critical point of bulk water. However, based on the experimental results presented here, there is no sign of a fragile-to-strong transition for water confined in C-S-H gel. Instead, the fragile-to-strong transition can be explained by a merging of two different relaxation processes at about 220 K. (C) 2013 AIP Publishing LLC
    corecore