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Abstract. We present an augmented dual-mixed variational formulation for
a linear convection-diffusion equation with homogeneous Dirichlet boundary
conditions. The approach is based on the addition of suitable least squares
type terms. We prove that for appropriate values of the stabilization parame-
ters, that depend on the diffusion coefficient and the magnitude of the convec-
tive velocity, the new variational formulation and the corresponding Galerkin
scheme are well-posed, and a Céa estimate holds. In particular, we derive the
rate of convergence when the flux and the concentration are approximated,
respectively, by Raviart-Thomas and continuous piecewise polynomials. In
addition, we introduce a simple a posteriori error estimator which is reliable
and locally efficient. Finally, we provide numerical experiments that illustrate
the behavior of the method.
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1. Introduction. The numerical solution of convection-diffusion problems by
a mixed method presents two main difficulties. On the one hand, stability can
be ensured only when the discrete spaces satisfy the inf-sup condition. On the
other hand, instabilities can also occur when convection is dominant. In this
paper, we follow the ideas in [4, 1] and propose an augmented dual-mixed vari-
ational formulation for linear convection-diffusion equations with homogeneous
Dirichlet boundary conditions. The approach is based on the addition of suitable
least squares type terms. We prove that for appropriate values of the stabiliza-
tion parameters, that depend on the diffusion coefficient and the magnitude of
the convective velocity, the new variational formulation and the corresponding
Galerkin scheme are well-posed, and a Céa estimate holds for any finite element
subspaces. In particular, we derive the rate of convergence when the flux and the
concentration are approximated, respectively, by Raviart-Thomas and continu-
ous piecewise polynomials. In addition, we introduce a simple a posteriori error
estimator which is reliable and locally efficient. Finally, we provide numerical
experiments that illustrate the behavior of the method.

The paper is organized as follows. In Section 2 we recall the usual dual-mixed
variational formulation of the convection-diffusion problem. Then, in Section 3
we introduce and analyze the stabilized dual-mixed variational formulation. In
Section 4 we analyze the stabilized mixed finite element method. In Section 5,
we derive a new a posteriori error estimator and prove its reliability and local
efficiency. Finally, in Section 6 we provide some numerical results.

2. The model problem. Let Ω be a bounded connected subset of Rd (d = 2, 3)
with Lipschitz-continuous boundary Γ, and let ε be a positive parameter. Then,
given f ∈ L2(Ω) and b ∈ [L∞(Ω)]d, we consider the following linear convection-
diffusion problem: find u : Ω→ R such that{

−ε∆u + b · ∇u = f in Ω ,

u = 0 on Γ ,
(1)

where we assume that b is solenoidal.
We consider the following dual-mixed variational formulation of problem (1):

find σ ∈ H(div; Ω) and u ∈ H1
0 (Ω) such that

1

ε

∫
Ω
σ · τ +

∫
Ω
u div(τ) = 0 , ∀ τ ∈ H(div; Ω) ,

∫
Ω

div(σ) v −
∫

Ω
b · ∇u v = −

∫
Ω
fv , ∀ v ∈ H1

0 (Ω) ,

(2)

where σ := ε∇u.
Problem (2) was analyzed by Douglas and Roberts in [2]. It is well-known that

the Galerkin scheme associated to the variational formulation (2) is not stable
for any combination of finite element subspaces. In order to allow a greater set
of stable interpolations, we must consider a stabilization technique.
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3. Augmented dual-mixed variational formulation. We follow [4, 1] and
subtract the second equation in (2) from the first one. Then, we add the following
least-squares type terms:

κ1

∫
Ω

(div(σ)− b · ∇u)(div(τ) + b · ∇v) = −κ1

∫
Ω
f (div(τ) + b · ∇v) (3)

and

κ2

∫
Ω

(∇u− ε−1σ) · (∇v + ε−1τ) = 0 , (4)

where (σ, u) is the solution of (2) and (τ, v) ∈ H(div; Ω)×H1
0 (Ω). The stabiliza-

tion parameters, κ1 and κ2, are (in principle) any positive constants.
In what follows, we denote H := H(div; Ω) × H1

0 (Ω), and endow this space
with the product norm

‖(τ, v)‖H := (‖τ‖2H(div;Ω) + ‖v‖2H1(Ω))
1/2 , ∀ (τ, v) ∈ H. (5)

The augmented variational formulation reads as follows: find (σ, u) ∈ H such
that

As((σ, u), (τ, v)) = Fs(τ, v) , ∀ (τ, v) ∈ H, (6)

where the bilinear form As : H ×H → R and the linear functional Fs : H → R
are defined by

As((σ, u), (τ, v)) :=
1

ε

∫
Ω
σ · τ +

∫
Ω
udiv(τ) −

∫
Ω

div(σ) v +

∫
Ω

b · ∇u v

+κ1

∫
Ω

(div(σ)− b · ∇u) (div(τ) + b · ∇v)

+κ2

∫
Ω

(∇u− ε−1 σ) · (∇v + ε−1 τ)

(7)
and

Fs(τ, v) :=

∫
Ω
f v − κ1

∫
Ω
f (div(τ) + b · ∇v) (8)

for all (σ, u), (τ, v) ∈ H.
It is clear that the bilinear form As(·, ·) and the linear functional Fs are con-

tinuous in H. Indeed, the continuity constant of the bilinear form As(·, ·) can

be taken as Ccont = α + β + κ1 α
2 + κ2 β

2, with α = 1 +
√
d ‖b‖[L∞(Ω)]d and

β = 1 + ε−1.
On the other hand, since b is solenoidal, for v ∈ H1

0 (Ω) there holds∫
Ω

b · ∇v v = 0 . (9)

Using this identity we deduce that

As((τ, v), (τ, v)) ≥ 1

ε
(1− κ2

ε
)||τ ||2[L2(Ω)]d + κ1 ||div(τ)||2L2(Ω)

+ (κ2 − κ1 d ||b||2[L∞(Ω)]d) ||∇v||2[L2(Ω)]d .
(10)

Therefore, if we choose the stabilization parameters κ1 and κ2 such that

κ1 > 0, 1− κ2

ε
> 0 and κ2 − κ1 d ||b||2[L∞(Ω)]d > 0 , (11)
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then the bilinear form As(·, ·) will be coercive in H, with a coercivity constant

Cell := min{1

ε
(1− κ2

ε
), κ1, (κ2 − κ1 d ||b||2[L∞(Ω)]d)CΩ} , (12)

where CΩ is the Poincaré constant. We have the following result.

Theorem 1. Assume that

0 < κ2 < ε and 0 < κ1 <
κ2

d ||b||2[L∞(Ω)]d
. (13)

Then, problem (6) is well-posed.

Proof. It follows from the previous considerations and the Lax-Milgram
Lemma.

4. Augmented mixed finite element method. Let {Th}h>0 be a family of
shape-regular meshes of Ω̄ made up of triangles if d = 2 or tetrahedra if d = 3.
We denote by hT the diameter of an element T ∈ Th and define h := maxT∈ThhT .
Let Hh ⊂ H(div; Ω) and Vh ⊂ H1

0 (Ω) be any finite element subspaces. Then, the
Galerkin scheme associated to problem (6) reads: find (σh, uh) ∈ Hh × Vh such
that

As((σh, uh), (τh, vh)) = Fs(τh, vh) , ∀ (τh, vh) ∈ Hh × Vh . (14)

Under the assumptions of Theorem 1, problem (14) has a unique solution
(σh, uh) ∈ Hh × Vh. Moreover,

||(σ − σh, u− uh)||H ≤
Ccont

Cell
inf

(τh,vh)∈Hh×Vh
||(σ − τh, u− vh)||H . (15)

In order to establish a rate of convergence result, we consider specific finite
element subspaces Hh and Vh. Hereafter, given T ∈ Th and an integer l ≥ 0, we
denote by Pl(T ) the space of polynomials of total degree at most l defined on
T and, given an integer r ≥ 0, we denote by RT r(T ) the local Raviart-Thomas
space of order r (cf. [5]). Given r ≥ 0 and m ≥ 1, we define

Hh :=
{
τh ∈ H(div; Ω) : τh

∣∣
T
∈ RT r(T ), ∀T ∈ Th

}
,

Vh :=
{
vh ∈ C(Ω) ∩H1

0 (Ω) : vh
∣∣
T
∈ Pm(T ), ∀T ∈ Th

}
.

(16)

The corresponding rate of convergence is given in the next theorem.

Theorem 2. Assume (13). Moreover, assume that σ ∈ [Ht(Ω)]d, div(σ) ∈
Ht(Ω) and u ∈ Ht+1(Ω). Then, there exists Cerr > 0, independent of h, such
that

||(σ − σh, u− uh)||H ≤ Cerr h
min{t,m,r+1}(

||σ||[Ht(Ω)]d + ||div(σ)||Ht(Ω) + ||u||Ht+1(Ω)

)
.

(17)

Proof. It follows straightforwardly from inequality (15) and the approximation
properties of the corresponding finite element subspaces.



A POSTERIORI ERROR ANALYSIS FOR CONVECTION-DIFFUSION 529

5. A posteriori error analysis. In this section, we assume that the stabi-
lization parameters satisfy the hypotheses of Theorems 1 and 2. We develop a
residual-based a posteriori error analysis of the augmented mixed finite element
method (14). We derive a simple a posteriori error estimator and prove that it
is reliable and locally efficient.

Let Hh ⊂ H(div; Ω) and Vh ⊂ H1
0 (Ω) be any finite element subspaces, and let

(σ, u) ∈ H and (σh, uh) ∈ Hh × Vh be the unique solutions to problems (6) and
(14), respectively. Then, we consider the residual

Rh(τ, v) := Fs(τ, v)−As((σh, uh), (τ, v)) , ∀ (τ, v) ∈ H. (18)

Using the coercivity of the bilinear form As(·, ·) and the definition of the residual
(18), we deduce

‖(σ − σh, u− uh)‖H ≤ C−1
ell sup

(τ,v)∈H

(τ,v)6=(0,0)

Rh(τ, v)

‖(τ, v)‖H
. (19)

In the next lemma, we obtain an upper bound for the residual.

Lemma 1. The right-hand side of inequality (19) can be bounded by

C−1
ellC

(
||f + div(σh)− b · ∇uh||L2(Ω) + ||∇uh − ε−1 σh||[L2(Ω)]d) , (20)

with C = max(1 + κ1(1 +
√
d ‖b‖[L∞(Ω)]d), 1 + κ2(1 + ε−1)).

Proof. Using the definitions of the linear functional Fs and the bilinear form
As(·, ·), we can write

Rh(τ, v) = R1(τ) +R2(v) , ∀ τ ∈ H(div; Ω) , ∀ v ∈ H1
0 (Ω) , (21)

where R1 : H(div; Ω)→ R and R2 : H1
0 (Ω)→ R are defined by

R1(τ) := − 1

ε

∫
Ω
σh · τ −

∫
Ω
uh div(τ)

−κ1

∫
Ω

(f + div(σh)− b · ∇uh) div(τ)

−κ2

∫
Ω

(∇uh −
1

ε
σh) · 1

ε
τ

(22)

and

R2(v) :=

∫
Ω

(f + div(σh)− b · ∇uh) v

−κ1

∫
Ω

(f + div(σh)− b · ∇uh) b · ∇v

−κ2

∫
Ω

(∇uh −
1

ε
σh) · ∇v

(23)

The proof follows integrating by parts the second term in R1, using the boundary
condition and applying the Cauchy-Schwarz inequality.

Motivated by this result, we define the a posteriori error indicator θ

θ2 :=
∑
T∈Th

θ2
T , (24)
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with

θ2
T := ‖f + div(σh)− b · ∇uh‖2L2(T ) + ‖∇uh −

1

ε
σh‖2[L2(T )]d . (25)

In the next theorem, we establish the equivalence between the total error and
the estimator θ. Inequality (26) means that the a posteriori error estimator θ is
reliable, whereas inequality (27) means that θ is locally efficient.

Theorem 3. Let (σ, u) ∈ H and (σh, uh) ∈ Hh × Vh be the unique solutions to
problems (6) and (14), respectively. Then, there exists a positive constant Crel,
independent of h, such that

‖(σ − σh, u− uh)‖H ≤ Crel θ , (26)

and there exists a positive constant Ceff, independent of h and T , such that

Ceff θT ≤ ‖(σ − σh, u− uh)‖H(div,T )×H1(T ) , ∀T ∈ Th . (27)

Proof. Using (19), Lemma 1 and the definition of θ, we deduce that the a poste-
riori error estimator θ is reliable, with Crel =

√
2C−1

ellC, where C is the constant
of Lemma 1. On the other hand, to prove the local efficiency of θ, we recall that
f = −div(σ) + b · ∇u and 1

εσ −∇u = 0 in Ω. Then, the proof follows using the

triangle inequality with C−2
eff := 2 max{ 1

ε2
, 1 + d ‖b‖2

[L∞(Ω)]d
}.

6. Computational results. In order to study the behavior of this method in
practice, we consider a test problem from [3]. We take Ω = (0, 1) × (0, 1), b =
(1, 0) and define f such that the exact solution is

u(x1, x2) = 0.5x1 (1.0− x1)x2 (1.0− x2) (1.0− tanh((0.5− x1)/γ)) (28)

with γ = 0.05. We remark that u satisfies the homogeneous Dirichlet boundary
condition on Γ and that it has a boundary layer along the line x1 = 0.5.

We approximated the flux and the concentration by piecewise linear elements
and start with an initial mesh of 20× 20 elements. As stabilization parameters,
we choose κ1 = ε

4 d ‖b‖2
[L∞(Ω)]d

and κ2 = ε
2 . In particular, in the convection-

dominated regime (ε << ‖b‖[L∞(Ω)]d), the efficiency index, which is defined as
the ratio between the estimator and the total error, will stay in the range

ε

6
√

2d‖b‖2
[L∞(Ω)]d

≈ C−1
rel ≤

θ

‖(σ − σh, u− uh)‖H
≤ C−1

eff ≈
√

2

ε
. (29)

In Figure 1, we provide, on the left, the decay of the error and error estimate
for the uniform and adaptive refinements for the values ε = 1, 10−2, 10−4. We
observe that the adaptive algorithm performs better for moderately small values
of ε. On the right we show the efficiency indices for the adaptive refinement
algorithm. In all cases they approach one, which confirms the equivalence of the
a posteriori error estimate and the total error in practice. This result is much
better than that predicted by the theory.
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Figure 1. Graphs for the error and error estimate (left) and
efficiency index (right) for ε = 1, 10−2, 10−4.
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