1,146 research outputs found

    Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear

    Full text link
    Of all current detection techniques with nanometer resolution, only X-ray microscopy allows imaging nanoparticles in suspension. Can it also be used to investigate structural dynamics? When studying response to mechanical stimuli, the challenge lies in applying them with precision comparable to spatial resolution. In the first shear experiments performed in an X-ray microscope, we accomplished this by inserting a piezo actuator driven shear cell into the focal plane of a scanning transmission X-ray microscope (STXM). Thus shear-induced reorganization of magnetite nanoparticle aggregates could be demonstrated in suspension. As X-ray microscopy proves suitable for studying structural change, new prospects open up in physics at small length scales.Comment: submitted to J. Synchrot. Radia

    An: In situ structural study on the synthesis and decomposition of LiNiO2

    Get PDF

    Molecular Genetic Approaches to Disease of Neural Development

    Get PDF
    This study utilized novel genetic techniques in order to find causative gene mutations that underlie diseases of neural development. Our laboratory has collected 175 cases of malformations of cortical development (MCD) from the United States and Europe. Four of these cases are the focus of this manuscript: two familial cases of infantile neuroaxonal dystrophy (INAD), a familial case of hereditary spastic paraparesis (HSP), and a sporadic case of Greig cephalopolysyndactyly (GCPS) and cerebral cavernous malformations (CCMs). The techniques utilized to study the affected patients include microarray-based single nucleotide polymorphism (SNP) genotyping and copy number variation (CNV) analysis, both of which are powerful tools in the hunt for disease-causing gene mutations. In the familial cases of INAD, we report two novel mutations in the PLA2G6 gene, previously shown to cause INAD when mutated. In the familial case of HSP, we demonstrate linkage to the SPG11 locus on chromosome 15q. Finally, in the sporadic case of GCPS and CCM, we published the first report on this novel syndrome along with a genetic analysis that demonstrates a microdeletion on chromosome 7p, resulting in heterozygous loss of both the GLI3 and CCM2 genes. The three studies presented in this manuscript demonstrate the utility of SNP genotyping and CNV analysis in revealing the genetic mutations that underlie diseases of neural development

    Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?

    Full text link
    On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at 100\geq 100 MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, 220.9S22^{0}.9 S, 430.2W43^{0}.2 W, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background 20%\sim 20\% in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTop surface component of the IceCube neutrino observatory). We also report the observation of the muon signal possibly associated with the CME/sheath striking the Earth magnetosphere on May 20, 2012. We show that the observed temporal correlation of the muon excess observed by the Tupi muon telescopes with solar transient events suggests a real physical connection between them. Our observation indicates that combination of two factors, the low energy threshold of the Tupi muon telescopes and the location of the Tupi experiment in the South Atlantic Anomaly region, can be favorable in the study and detection of the solar transient events. Our experiment provides new data complementary to other techniques (space and ground based) in the study of solar physics.Comment: 9 pages, 10 figure

    Magnetic Structures of High Temperature Phases of TbBaCo2O5.5

    Full text link
    Neutron diffraction studies have been carried out on a single crystal of oxygen-deficient perovskite TbBaCo2O5.5 in the temperature range of 7-370 K. There have been observed several magnetic or structural transitions. Among these, the existence of the transitions to the insulating phase from the metallic one at ~340 K, to the one with the ferromagnetic moment at ~280 K and possibly to the antiferromagnetic one at ~260 K, with decreasing temperature T correspond to those reported in former works. We have studied the magnetic structures at 270 K and 250 K and found that all Co3+ ions of the CoO6 octahedra are in the low spin state and those of the CoO5 pyramids carry spins which are possibly in the intermediate spin state. Non-collinear magnetic structures are proposed at these temperatures. Two other transitions have also been observed at the temperatures, ~100 K and ~250 K.Comment: 9 pages, 2 tables, 10 figure

    Low thermal conductivity in La-filled cobalt antimonide skutterudites with an inhomogeneous filling factor prepared under high-pressure conditions

    Full text link
    La-filled skutterudites LaxCo4Sb12 (x : 0.25 and 0.5) have been synthesized and sintered in one step under high-pressure conditions at 3.5 GPa in a piston-cylinder hydrostatic press. The structural properties of the reaction products were characterized by synchrotron X-ray powder diffraction, clearly showing an uneven filling factor of the skutterudite phases, confirmed by transmission electron microscopy. The non-homogeneous distribution of La filling atoms is adequate to produce a significant decrease in lattice thermal conductivity, mainly due to strain field scattering of high-energy phonons. Furthermore, the lanthanum filler primarily acts as an Einstein-like vibrational mode having a strong impact on the phonon scattering. Extra-low thermal conductivity values of 2.39 W/mK and 1.30 W/mK are measured for La0.25Co4Sb12 and La0.5Co4Sb12 nominal compositions at 780 K, respectively. Besides this, lanthanum atoms have contributed to increase the charge carrier concentration in the samples. In the case of La0.25Co4Sb12, there is an enhancement of the power factor and an improvement of the thermoelectric properties

    A different look at the spin state of Co3+^{3+} ions in CoO5_{5} pyramidal coordination

    Full text link
    Using soft-x-ray absorption spectroscopy at the Co-L2,3L_{2,3} and O-KK edges, we demonstrate that the Co3+^{3+} ions with the CoO5_{5} pyramidal coordination in the layered Sr2_2CoO3_3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites, and calls for a re-examination of the modeling for the complex and fascinating properties of these new materials.Comment: 5 pages 3 figure

    Systematics of electronic and magnetic properties in the transition metal doped Sb2_2Te3_3 quantum anomalous Hall platform

    Full text link
    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically-doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here we report on a detailed and systematic investigation of transition-metal (TM)-doped Sb2_2Te3_3. By combining density functional theory (DFT) calculations with complementary experimental techniques, i.e., scanning tunneling microscopy (STM), resonant photoemission (resPES), and x-ray magnetic circular dichroism (XMCD), we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM-doped TIs. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2_2Te3_3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity-dependent and can vary from in-plane to out-of-plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM-doped Sb2_2Te3_3 in the ferromagnetic state.Comment: 40 pages, 13 figure

    Correlates of Snake Entanglement in Erosion Control Blankets

    Get PDF
    In road construction projects across the United States, erosion control methods (e.g., erosion control blankets [ECBs]), are mandated to stimulate seedbed regeneration and prevent soil loss. Previous reports have suggested that snakes are vulnerable to entanglement in ECBs. We conducted a literature review, field surveys, and an entanglement experiment to examine what factors increase a snake’s risk of ECB entanglement. Our literature review produced reports of 175 reptiles entangled in mesh products, 89.1% of which were snakes, with 43.6% of snake entanglements occurring in erosion control products. During our field surveys, we found 10 entangled snakes (n = 2 alive; n = 8 dead). From our experiment, we found that ECBs that contain fixed‐intersection, small‐diameter mesh consisting of polypropylene were significantly more likely to entangle snakes compared with ECBs with larger diameter polypropylene mesh or ECBs that have woven mesh made of natural fibers. Snake body size was also associated with entanglement; for every 1‐mm increase in body circumference, the probability of entanglement increased 4%. These results can help construct a predictive framework to determine those species and individuals that are most vulnerable to entanglement
    corecore