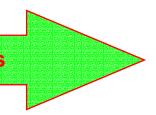
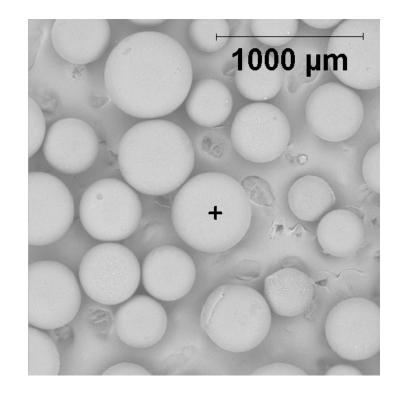
Novel Tertiary Amine Solid Adsorbents Used for the Capture of Carbon Dioxide

McMahan L. Gray
Daniel Fauth
Kenneth Champagne
Eric Beckman
Thomas Tarka

Presentation Outline

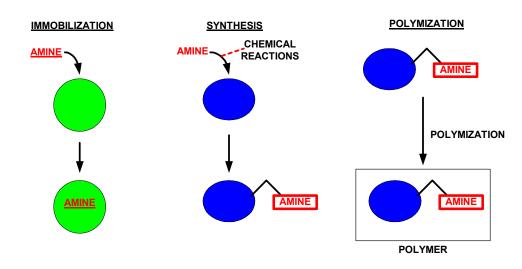
- Overview and Background
- Preliminary System Analysis
- Experimental Conditions and Results
- Conclusions


Background – Carbon Dioxide Capture Technologies


Technical Challenges for Liquid Amine System

- **≻**Capture Capacities
- **≻Energy Requires**
- **≻**Mass and Heat Thermodynamics
- **≻Amine Degradation**
- **≻Waste Products**
- **≻Corrosion Inhibitors**
- **≻Materials Balance**

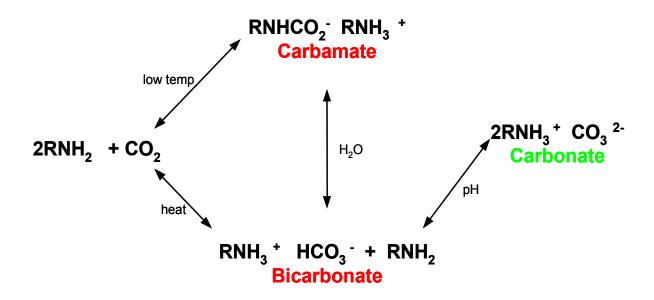
Solid Amine Adsorbents



To develop low-cost solid adsorbents to be used in an efficient process for the capture of CO2 from flue gas streams

Background - Adsorbent Parameters

Adsorbent Pathways


Performance and Cost

Adsorbent Criteria

- Basicity
- Vapor Pressure
- Viscosity
- Substrate
- Capture Capacity
- TemperatureStability
- Regenerable
- Durability
- Flue Gas Stream

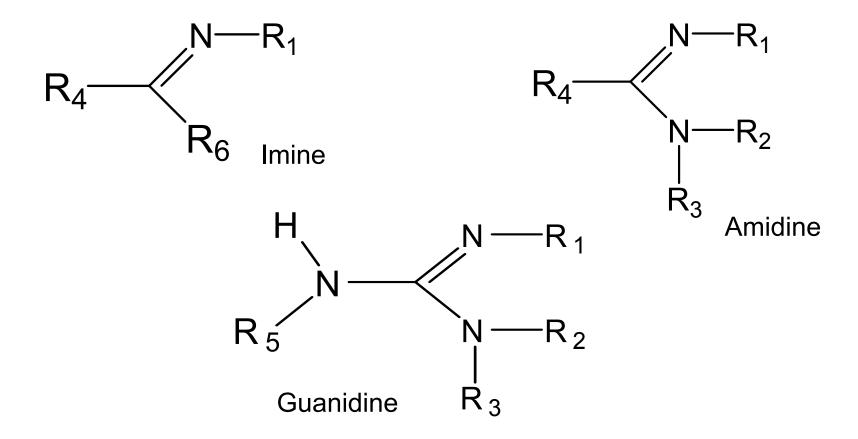
Proposed Reaction Sequence (in solution)

Hook, R. J., Ind. Eng. Chem. Res., 1997, 36, 1779 -1790

Brief Background on Amine-CO₂ Chemistry

$$-N \longrightarrow 0 \left(-H_3N - R\right)$$

Conventional aqueous amine scrubbing of gas streams, 1940 – 1975; amine reacts with CO₂ to form the carbamate, proton transfer produces ion-counter ion product. This chemistry mandates the need for 2 amine groups to bind 1 CO₂ molecule



$$\begin{array}{c} R \\ NH + CO_2 \end{array} \longrightarrow \begin{array}{c} R \\ NH^+ \\ R \end{array} O \left(-\frac{1}{2} \right)$$

G. Sartori, Exxon, early 1970's: By using a hindered amine, the initial reaction between CO₂ and the amine to form the carbamate is inhibited, allowing proton transfer to the amine to dominate.

Carbon Dioxide Capture Interaction Groups

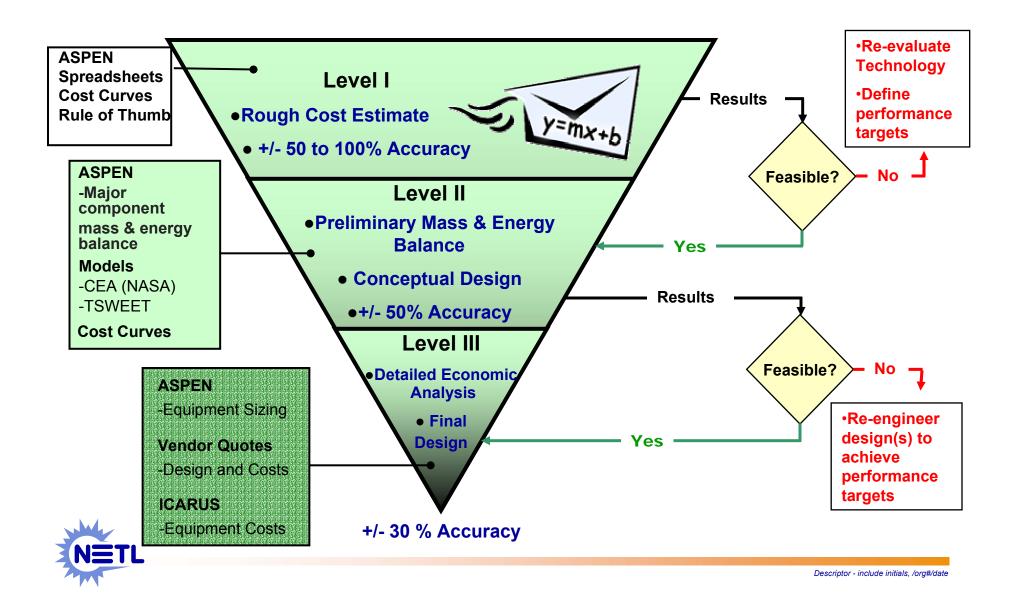
Are strong bases that binds and interacts CO₂ reversibly chemical reaction at 1:1 molar ratio.

Fundamental Chemistry: Certain imino-functional compounds bind CO₂ reversible in a 1:1 fashion

$$H_{2}O + CO_{2}$$

DBU Bicarbonate

Diazabicycloundecane (DBU)


J. Org. Chem. 2005, 70, 5335-5338

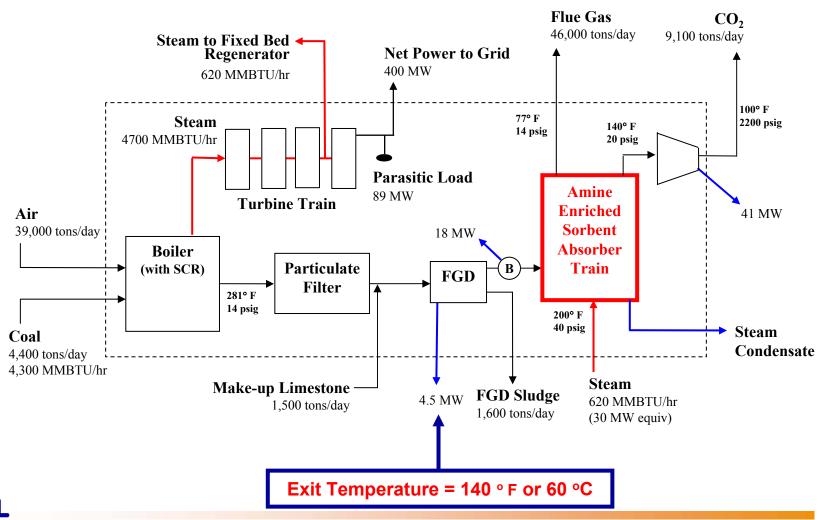
Preliminary System Analysis

Systems Analysis Level of Detail

Solid Amine Adsorbent Advantage

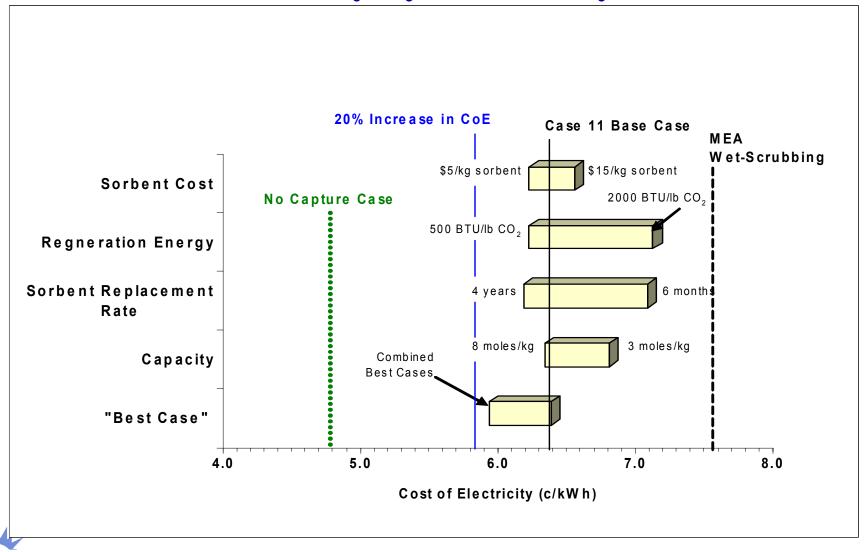
Reduction in Heating Capacities and Stripping steam for CO2 regeneration

Amine-Enriched Sorbents			
Heat Capacity (Btu/lb-°F)		0.3	
∆T Regeneration		80°F	
Regeneration Energy (Btu/lb CO ₂)			
Sensible		183	
Reaction	+	600*	
Vaporization	+	0	
Total	=	783	


30% MEA [1]			
Heat Capacity (Btu/lb-°F)			0.9
∆T Regeneration		105°F	
Regeneration Energy (Btu/lb CO ₂)			
Sensible			941
Reaction		+	703
Vaporization		+	290
Total	:	=	1,934

System – Post Combustion

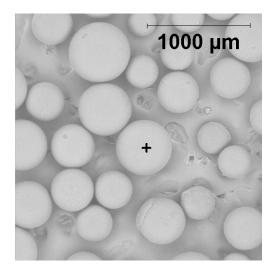
Solid Amine Adsorbent Advantanges


Higher CO2 carrying capacity per lb of sorbent

	30% MEA	Amine Sorbent
Density (lb/ft³)	22	44
Working Capacity (lb CO ₂ /lb sorbent)	0.052	0.264
	19 lbs solution	3.8 lbs sorbent
Mass sorbent per pound CO ₂		
	0.8	0.08
Volume per Pound CO ₂ (ft ³ /lb CO ₂)		

10x Reduction in volume to treat equivalent amount of CO2

Preliminary System Analysis



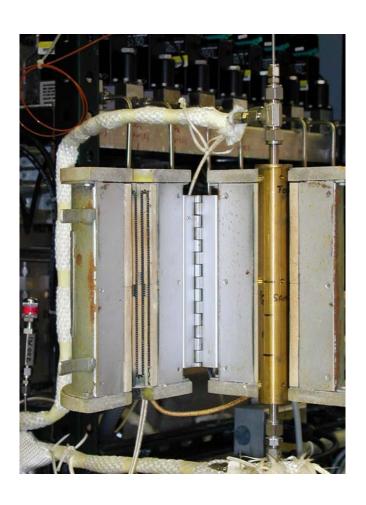
Experimental

Materials and Reagents

- Chemicals from Aldrich Chemicals
 - -1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)
 - Methanol Reagent Grade
- Mitsubishi Chemicals
 - Diaion ® HP2MG Poly methyl(methylacrylate) Bead
 - PMMA

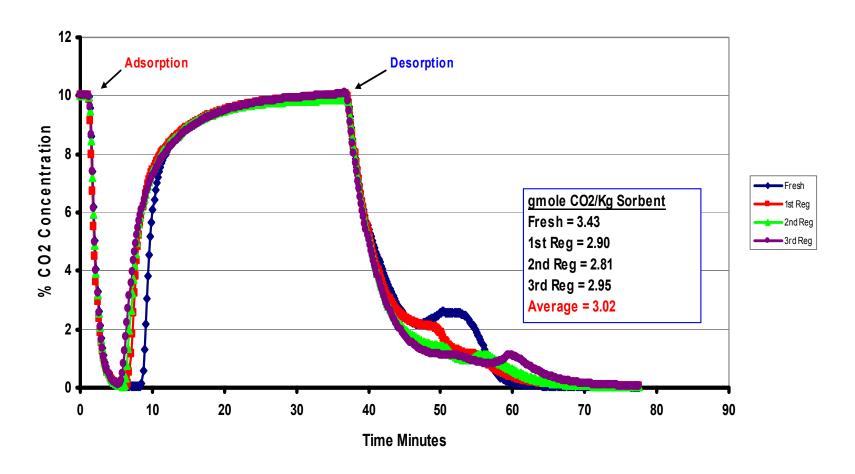
Particle size >250 μ m

Preparation of Immobilized Adsorbents


- 75 grams of PMMA Beads placed in 300 ml of methanol and agitated
- Addition of the DBU at various weights ratio
 - -7.5 grams 10 (Beads/DBU wt. ratio)
 - 15 grams 5 (Beads/DBU wt. ratio)
 - -30 grams 2.5 (Beads/DBU wt. ratio)
- Heated over the temperature range of 25-90 °C
- Vacuum pressure range of 760-10 mmHg
- Stored in refrigerator until testing

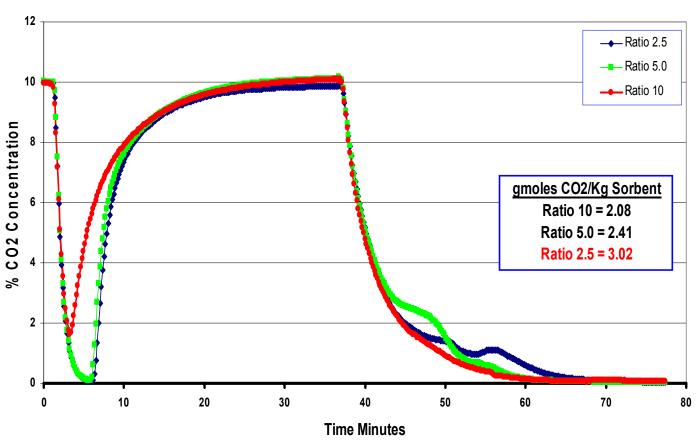
US Patent 5,876,488

NETL Carbon Dioxide Capture Reactor



Experimental Conditions

- 1.0 Gram sample (Immobilized Secondary Amine Sorbents)
- He/2% H₂O Pretreatment at 25 °C (150 ml/min)
- 10% CO₂/2 % H₂O/He at 25-65 °C (100 ml/min) Adsorption
- He/2% H₂O at 90 °C (150 ml/min) Desorption
- Pfeiffer Vacuum OminiStar 300 Mass Spectrometer



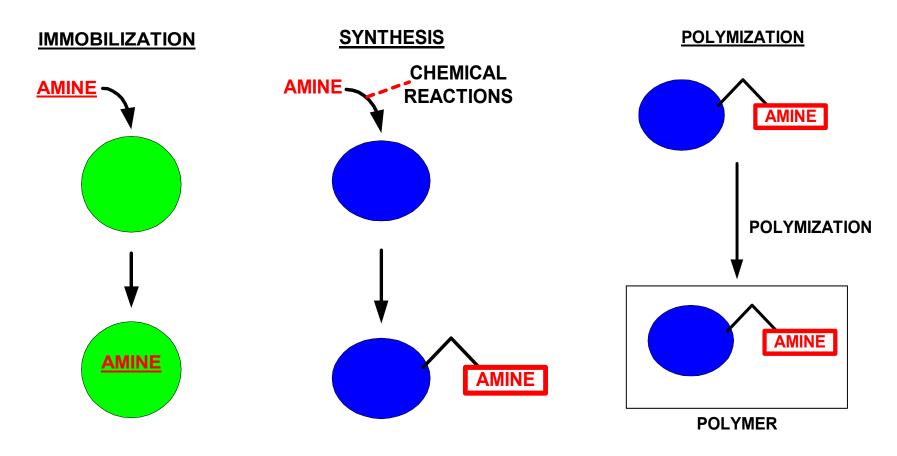
Breakthrough Curve for DBU at 2.5 Loading Weight Ratio

DBU Loading Effect on the Performance of Immobilized Adsorbents at 25 C

Performance of PMMA/DBU Immobilized Adsorbent at 25 °C

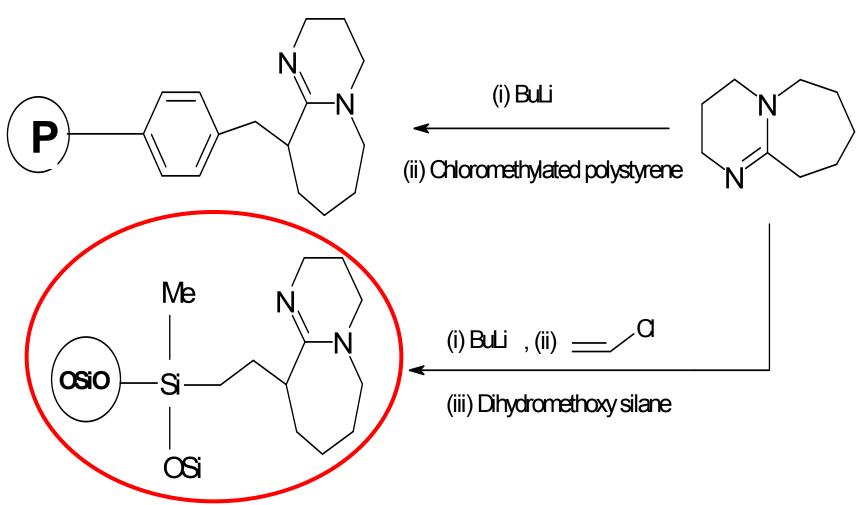
Sorbent	Wt. Ratio PMMA/DBU	Surface Area m²/g	Pore Volume ml/gram	gmole CO₂/ Kg sorbent
Diaion ® HP2MG¹	NA	5.79	1.12	0.0
DBU-1	10	369	1.10	2.08
DBU-2	5	207	0.84	2.41
DBU-3	2.5	94	0.58	3.02

¹ Diaion ® HP2MG Poly methyl(methylacrylate) Bead – PMMA


XPS Analysis of DBU-3 at Various Temperatures

Temperature °C	gmole CO ₂ /	XPS N1s
	Kg sorbent	
25	3.02	1.03
45	2.47	NA
65	2.34	1.26

Good Stability of the DBU within the Diaion ® HP2MG Poly methyl(methylacrylate) Bead



Pathways to Solid Amine Adsorbents

Initial Proof of Concept: A DBU-functional adsorbents

A DBU-functional silicone Adsorbent

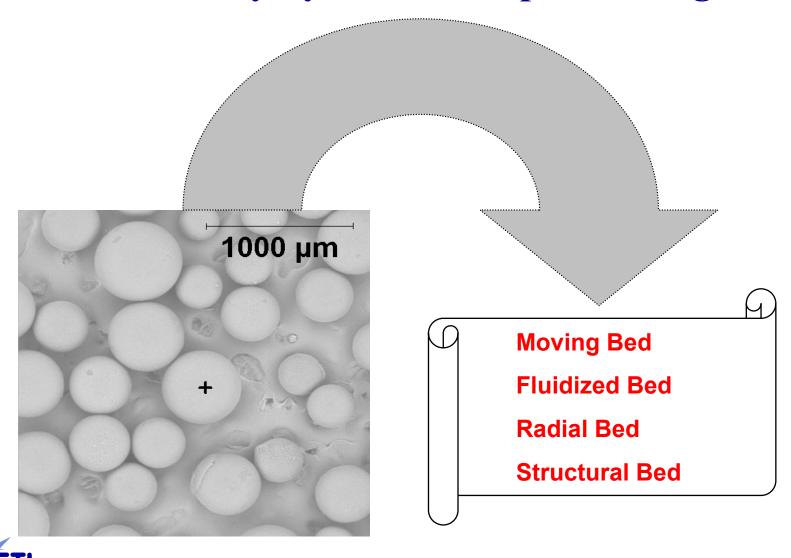
Capture Temperature °C	gmole CO₂/Kg Sorbent	XPS N1s
25	3.31	4.2
45	3.26	NA
65	3.19	4.0

Polymeric DBU-acrylate Si—OH Cl₃Si² **Increase Amine Loading** CuX, CuBr₂ **Polymeric Adsorbents** 2,2'-dipyridyl 3-5 gmole CO2/Kg Sorbent Grafted Polyacrylate Descriptor - include initials, /org#/date

Conclusions

Conclusions

- The regenerable solid Tertiary adsorbents were capable of capturing carbon dioxide in levels greater than 3 gmole CO₂/Kg adsorbent baseline.
- Adsorbents were capable of capturing CO₂ up to 65 °C.
- Tested in substrate systems.
 - Immobilization of DBU was stable
 - Synthetic Adsorbent was more at the higher temperatures
- Currently testing monomers and polymers of the imine and other amine based adsorbents (3-6 gmoles CO₂/Kg adsorbent).



Acknowledgements

- Abbie Layne Divisional Director of Separation and Fuels Processing Division
- Geo Richards Focus Area Leader for Energy System and Dynamics

Preliminary System Conceptual Design

