448 research outputs found

    Étude de l'activité phosphatasique particulaire au sein d'un écosystème pollué : le port de Toulon

    Get PDF
    L'activité phosphatasique a été mesurée sur le matériel particulaire obtenu par filtration d'eau de mer sur des membranes de 90 µm, 5 µm et 0,25 µm de vide de maille, de décembre 1999 à mars 2000. Le substrat utilisé est du paranitrophénylphosphate (pNPP) dissous dans l'eau de mer. Dans ces conditions, deux types d'activités, à faible et à forte affinités, ont été caractérisés pour chaque classe de taille. La contribution de la classe de taille comprise entre 0,25 et 5 µm à l'ensemble de l'activité a été la plus faible des trois fractions, alors que celle de la classe de taille supérieure à 90 µm a souvent été la plus forte. Des activités associées à la présence de bactéries ont été mises en évidence sur les fractions zooplanctonique et phytoplanctonique. Toutefois, celles-ci n'ont pu rendre compte de la totalité des activités mesurées, en particulier pour le zooplancton.Phosphatase activity was estimated on particulate material resulting from filtration of sea water on 90, 5 and 0.25 µm membranes, from December 1999 to March 2000 in Toulon seaport. Para-nitrophenylphosphate (pNPP) dissolved in seawater was used as substrate. In these conditions, activities with low and high affinities were disclosed on each size class. The contribution of the 0.25-5 µm fraction was low, whereas the activity of the size class superior to 90 µm was elevated. Enzyme activities of fixed bacteria were characterized in the zooplanktonic and phytoplanktonic fractions. However, they cannot explain the totality of the measured activities in particular for zooplankton

    Optical control of the spin state of two Mn atoms in a quantum dot

    Get PDF
    We report on the optical spectroscopy of the spin of two magnetic atoms (Mn) embedded in an individual quantum dot interacting with either a single electron, a single exciton and single trion. As a result of their interaction to a common entity, the Mn spins become correlated. The dynamics of this process is probed by time resolved spectroscopy, that permits to determine the optical orientation time in the range of a few tens of nsns. In addition, we show that the energy of the collective spin states of the two Mn atoms can be tuned through the optical Stark effect induced by a resonant laser field

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter

    Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces

    Full text link
    Through combined ferromagnetic resonance, spin-pumping and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of spin diffusion length sfPt=3.4±0.4\ell_{\rm sf}^{\rm Pt}=3.4\pm0.4 nm and of spin Hall angle θSHEPt=0.051±0.004\theta_{\rm SHE}^{\rm Pt}=0.051\pm0.004 for Pt. Our data and model emphasize on the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.Comment: 6 pages, 3 figures (main text) and 8 pages supplementary. Published with small modifications in Phys. Rev. Let

    Model of bound interface dynamics for coupled magnetic domain walls

    Full text link
    A domain wall in a ferromagnetic system will move under the action of an external magnetic field. Ultrathin Co layers sandwiched between Pt have been shown to be a suitable experimental realization of a weakly disordered 2D medium in which to study the dynamics of 1D interfaces (magnetic domain walls). The behavior of these systems is encapsulated in the velocity-field response v(H) of the domain walls. In a recent paper [P.J. Metaxas et al., Phys. Rev. Lett. 104, 237206 (2010)] we studied the effect of ferromagnetic coupling between two such ultrathin layers, each exhibiting different v(H) characteristics. The main result was the existence of bound states over finite-width field ranges, wherein walls in the two layers moved together at the same speed. Here, we discuss in detail the theory of domain wall dynamics in coupled systems. In particular, we show that a bound creep state is expected for vanishing H and we give the analytical, parameter free expression for its velocity which agrees well with experimental results.Comment: 9 page

    Spin injection in Silicon at zero magnetic field

    Get PDF
    In this letter, we show efficient electrical spin injection into a SiGe based \textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field \textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.Comment: accepted in AP

    Electrical spin injection and detection in Germanium using three terminal geometry

    Full text link
    In this letter, we report on successful electrical spin injection and detection in \textit{n}-type germanium-on-insulator (GOI) using a Co/Py/Al2_{2}O3_{3} spin injector and 3-terminal non-local measurements. We observe an enhanced spin accumulation signal of the order of 1 meV consistent with the sequential tunneling process via interface states in the vicinity of the Al2_{2}O3_{3}/Ge interface. This spin signal is further observable up to 220 K. Moreover, the presence of a strong \textit{inverted} Hanle effect points at the influence of random fields arising from interface roughness on the injected spins.Comment: 4 pages, 3 figure

    Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy

    Full text link
    Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy (XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow of an object lying on a surface, may be used to gather information about the three-dimensional magnetization texture inside the object. Our purpose here is to lay the basis of a quantitative analysis of this technique. We first discuss the principle and implementation of a method to simulate the contrast expected from an arbitrary micromagnetic state. Text book examples and successful comparison with experiments are then given. Instrumental settings are finally discussed, having an impact on the contrast and spatial resolution : photon energy, microscope extraction voltage and plane of focus, microscope background level, electric-field related distortion of three-dimensional objects, Fresnel diffraction or photon scattering

    Electrical and thermal spin accumulation in germanium

    Full text link
    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.Comment: 7 pages, 3 figure
    corecore