904 research outputs found

    Rare dental trait provides morphological evidence of archaic introgression in Asian fossil record

    No full text
    The recently described Denisovan hemimandible from Xiahe, China [F. Chen et al., (2019) Nature 569, 409–412], possesses an unusual dental feature: a 3-rooted lower second molar. A survey of the clinical and bioarchaeological literature demonstrates that the 3-rooted lower molar is rare (less than 3.5% occurrence) in non-Asian Homo sapiens. In contrast, its presence in Asian-derived populations can exceed 40% in China and the New World. It has long been thought that the prevalence of 3-rooted lower molars in Asia is a relatively late acquisition occurring well after the origin and dispersal of H. sapiens. However, the presence of a 3-rooted lower second molar in this 160,000-y-old fossil hominin suggests greater antiquity for the trait. Importantly, it also provides morphological evidence of a strong link between archaic and recent Asian H. sapiens populations. This link provides compelling evidence that modern Asian lineages acquired the 3-rooted lower molar via introgression from Denisovans

    How old are the oldest Homo sapiens in Far East Asia?

    Get PDF

    The last Neanderthal

    Get PDF
    National Academy of Science

    Exploring the functional morphology of the Gorilla shoulder through musculoskeletal modelling

    Get PDF
    Abstract Musculoskeletal computer models allow us to quantitatively relate morphological features to biomechanical performance. In non-human apes, certain morphological features have long been linked to greater arm abduction potential and increased arm-raising performance, compared to humans. Here, we present the first musculoskeletal model of a western lowland gorilla shoulder to test some of these long-standing proposals. Estimates of moment arms and moments of the glenohumeral abductors (deltoid, supraspinatus and infraspinatus muscles) over arm abduction were conducted for the gorilla model and a previously published human shoulder model. Contrary to previous assumptions, we found that overall glenohumeral abduction potential is similar between Gorilla and Homo. However, gorillas differ by maintaining high abduction moment capacity with the arm raised above horizontal. This difference is linked to a disparity in soft tissue properties, indicating that scapular morphological features like a cranially oriented scapular spine and glenoid do not enhance the abductor function of the gorilla glenohumeral muscles. A functional enhancement due to differences in skeletal morphology was only demonstrated in the gorilla supraspinatus muscle. Contrary to earlier ideas linking a more obliquely oriented scapular spine to greater supraspinatus leverage, our results suggest that increased lateral projection of the greater tubercle of the humerus accounts for the greater biomechanical performance in Gorilla. This study enhances our understanding of the evolution of gorilla locomotion, as well as providing greater insight into the general interaction between anatomy, function and locomotor biomechanics

    Comparison of the arm‐lowering performance between Gorilla and Homo through musculoskeletal modeling

    Get PDF
    Objectives:Contrary to earlier hypotheses, a previous biomechanical analysis indi-cated that long-documented morphological differences between the shoulders ofhumans and apes do not enhance the arm-raising mechanism. Here, we investigate adifferent interpretation: the oblique shoulder morphology that is shared by all homi-noids but humans enhances the arm-lowering mechanism.Materials and methods:Musculoskeletal models allow us to predict performancecapability to quantify the impact of muscle soft-tissue properties and musculoskeletalmorphology. In this study, we extend the previously published gorilla shoulder modelby adding glenohumeral arm-lowering muscles, then comparing the arm-loweringperformance to that of an existing human model. We further use the models to dis-entangle which morphological aspects of the shoulder affect arm-lowering capacityand result in interspecific functional differences.Results:Our results highlight that arm-lowering capacity is greater inGorillathan inHomo. The enhancement results from greater maximum isometric force capacitiesand moment arms of two important arm-lowering muscles, teres major, andpectoralis major. More distal muscle insertions along the humerus together with amore oblique shoulder configuration cause these greater moment arms.Discussion:The co-occurrence of improved arm-lowering capacity and high-muscleactivity at elevation angles used during vertical climbing highlight the importance of astrong arm-lowering mechanism for arboreal locomotor behavior in nonhuman apes.Therefore, our findings reveal certain skeletal shoulder features that are advanta-geous in an arboreal context. These results advance our understanding of adaptationin living apes and can improve functional interpretations of the hominin fossil recor

    Stable isotope evidence of meat eating and hunting specialization in adult male chimpanzees

    Get PDF
    Observations of hunting and meat eating in our closest living relatives, chimpanzees (Pan troglodytes), suggest that among primates, regular inclusion of meat in the diet is not a characteristic unique to Homo. Wild chimpanzees are known to consume vertebrate meat, but its actual dietary contribution is, depending on the study population, often either unknown or minimal. Constraints on continual direct observation throughout the entire hunting season mean that behavioral observations are limited in their ability to accurately quantify meat consumption. Here we present direct stable isotope evidence supporting behavioral observations of frequent meat eating among wild adult male chimpanzees (Pan troglodytes verus) in Taï National Park, Cîte d’Ivoire. Meat eating among some of the male chimpanzees is significant enough to result in a marked isotope signal detectable on a short-term basis in their hair keratin and long-term in their bone collagen. Although both adult males and females and juveniles derive their dietary protein largely from daily fruit and seasonal nut consumption, our data indicate that some adult males also derive a large amount of dietary protein from hunted meat. Our results reinforce behavioral observations of male-dominated hunting and meat eating in adult Taï chimpanzees, suggesting that sex differences in food acquisition and consumption may have persisted throughout hominin evolution, rather than being a recent development in the human lineage

    Evolution of brain lateralization: A shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes

    No full text
    Brain lateralization is commonly interpreted as crucial for human brain function and cognition. However, as comparative studies among primates are rare, it is not known which aspects of lateralization are really uniquely human. Here, we quantify both pattern and magnitude of brain shape asymmetry based on endocranial imprints of the braincase in humans, chimpanzees, gorillas, and orangutans. Like previous studies, we found that humans were more asymmetric than chimpanzees, however so were gorillas and orangutans, highlighting the need to broaden the comparative framework for interpretation. We found that the average spatial asymmetry pattern, previously considered to be uniquely human, was shared among humans and apes. In humans, however, it was less directed, and different local asymmetries were less correlated. We, thus, found human asymmetry to be much more variable compared with that of apes. These findings likely reflect increased functional and developmental modularization of the human brain

    Premolar root and canal variation in South African Plio-Pleistocene specimens attributed to Australopithecus africanus and Paranthropus robustus

    Get PDF
    South African hominin fossils attributed to Australopithecus africanus derive from the cave sites of Makapansgat, Sterkfontein, and Taung, from deposits dated between about 2 and 3 million years ago (Ma), while Paranthropus robustus is known from Drimolen, Kromdraai, and Swartkrans, from deposits dated between about 1 and 2 Ma. Although variation in the premolar root complex has informed taxonomic and phylogenetic hypotheses for these fossil hominin species, traditionally there has been a focus on external root form, number, and position. In this study, we use microtomography to undertake the first comprehensive study of maxillary and mandibular premolar root and canal variation in Australopithecus africanus and Paranthropus robustus (n = 166 teeth) within and between the species. We also test for correlations between premolar size and root morphology as predicted under the ‘size/number continuum’ (SNC) model, which correlates increasing root number with tooth size. Our results demonstrate previously undocumented variation in these two fossil hominin species and highlight taxonomic differences in the presence and frequency of particular root types, qualitative root traits, and tooth size (measured as cervix cross-sectional area). Patterns of tooth size and canal/root number are broadly consistent with the SNC model, however statistically significant support is limited. The implications for hominin taxonomy in light of the increased variation in root morphology documented in this study are discussed
    • 

    corecore