50,508 research outputs found
Direct Observation of Early-stage Quantum Dot Growth Mechanisms with High-temperature Ab Initio Molecular Dynamics
Colloidal quantum dots (QDs) exhibit highly desirable size- and
shape-dependent properties for applications from electronic devices to imaging.
Indium phosphide QDs have emerged as a primary candidate to replace the more
toxic CdSe QDs, but production of InP QDs with the desired properties lags
behind other QD materials due to a poor understanding of how to tune the growth
process. Using high-temperature ab initio molecular dynamics (AIMD)
simulations, we report the first direct observation of the early stage
intermediates and subsequent formation of an InP cluster from separated indium
and phosphorus precursors. In our simulations, indium agglomeration precedes
formation of In-P bonds. We observe a predominantly intercomplex pathway in
which In-P bonds form between one set of precursor copies while the carboxylate
ligand of a second indium precursor in the agglomerated indium abstracts a
ligand from the phosphorus precursor. This process produces an indium-rich
cluster with structural properties comparable to those in bulk zinc-blende InP
crystals. Minimum energy pathway characterization of the AIMD-sampled reaction
events confirms these observations and identifies that In-carboxylate
dissociation energetics solely determine the barrier along the In-P bond
formation pathway, which is lower for intercomplex (13 kcal/mol) than
intracomplex (21 kcal/mol) mechanisms. The phosphorus precursor chemistry, on
the other hand, controls the thermodynamics of the reaction. Our observations
of the differing roles of precursors in controlling QD formation strongly
suggests that the challenges thus far encountered in InP QD synthesis
optimization may be attributed to an overlooked need for a cooperative tuning
strategy that simultaneously addresses the chemistry of both indium and
phosphorus precursors.Comment: 40 pages, 9 figures, submitted for publicatio
Technological innovations at the onset of the Mid-Pleistocene Climate Transition in high-latitude East Asia
The interplay between Pleistocene climatic variability and hominin adaptations to diverse terrestrial ecosystems is a key topic in human evolutionary studies. Early and Middle Pleistocene environmental change and its relation to hominin behavioural responses has been a subject of great interest in Africa and Europe, though little information is available for other key regions of the Old World, particularly from Eastern Asia. Here we examine key Early Pleistocene sites of the Nihewan Basin, in high-latitude northern China, dating between ∼1.4 to 1.0 million years ago (Ma). We compare stone tool assemblages from three Early Pleistocene sites in the Nihewan Basin, including detailed assessment of stone tool refitting sequences at the ∼1.1 Ma-old site of Cenjiawan. Increased toolmaking skills and technological innovations are evident in the Nihewan Basin at the onset of the Mid-Pleistocene Climate Transition (MPT). Examination of the lithic technology of the Nihewan sites, together with an assessment of other key Palaeolithic sites of China, indicates that toolkits show increasing diversity at the outset of the MPT and in its aftermath. The overall evidence indicates the adaptive flexibility of early hominins to ecosystem changes since the MPT, though regional abandonments are also apparent in high-latitudes, likely owing to cold and oscillating environmental conditions. The view presented here sharply contrasts with traditional arguments that stone tool technologies of China are homogeneous and continuous over the course of the Early Pleistocene.Introduction Results - Stone-tool-knapping skills recorded in the Cenjiawan assemblage - Technological comparisons of the Nihewan Basin assemblages Discussio
An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method
The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage
A Simple Three-Parameter Model Potential For Diatomic Systems: From Weakly and Strongly Bound Molecules to Metastable Molecular Ions
Based on a simplest molecular orbital theory of H, a
three-parameter model potential function is proposed to describe ground-state
diatomic systems with closed-shell and/or S-type valence-shell constituents
over a significantly wide range of internuclear distances. More than 200 weakly
and strongly bound diatomics have been studied, including neutral and
singly-charged diatomics (e.g., H, Li, LiH, Cd, Na,
and RbH), long-range bound diatomics (e.g., NaAr, CdNe, He, CaHe,
SrHe, and BaHe), metastable molecular dications (e.g., BeH, AlH,
Mg, and LiBa), and molecular trications (e.g., YHe
and ScHe).Comment: 5 pages, 4 figures, accepted by Physical Review Letter
Microbubble Cavitation Imaging
Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 mu s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented
- …