43 research outputs found
The thick-thin decomposition and the bilipschitz classification of normal surface singularities
We describe a natural decomposition of a normal complex surface singularity
into its "thick" and "thin" parts. The former is essentially metrically
conical, while the latter shrinks rapidly in thickness as it approaches the
origin. The thin part is empty if and only if the singularity is metrically
conical; the link of the singularity is then Seifert fibered. In general the
thin part will not be empty, in which case it always carries essential
topology. Our decomposition has some analogy with the Margulis thick-thin
decomposition for a negatively curved manifold. However, the geometric behavior
is very different; for example, often most of the topology of a normal surface
singularity is concentrated in the thin parts.
By refining the thick-thin decomposition, we then give a complete description
of the intrinsic bilipschitz geometry of in terms of its topology and a
finite list of numerical bilipschitz invariants.Comment: Minor corrections. To appear in Acta Mathematic
The Neron-Severi group of a proper seminormal complex variety
We prove a Lefschetz (1,1)-Theorem for proper seminormal varieties over the
complex numbers. The proof is a non-trivial geometric argument applied to the
isogeny class of the Lefschetz 1-motive associated to the mixed Hodge structure
on H^2.Comment: 16 pages; Mathematische Zeitschrift (2008
Standard monomial theory for wonderful varieties
A general setting for a standard monomial theory on a multiset is introduced
and applied to the Cox ring of a wonderful variety. This gives a degeneration
result of the Cox ring to a multicone over a partial flag variety. Further, we
deduce that the Cox ring has rational singularities.Comment: v3: 20 pages, final version to appear on Algebras and Representation
Theory. The final publication is available at Springer via
http://dx.doi.org/10.1007/s10468-015-9586-z. v2: 20 pages, examples added in
Section 3 and in Section
Uniformizing the Stacks of Abelian Sheaves
Elliptic sheaves (which are related to Drinfeld modules) were introduced by
Drinfeld and further studied by Laumon--Rapoport--Stuhler and others. They can
be viewed as function field analogues of elliptic curves and hence are objects
"of dimension 1". Their higher dimensional generalisations are called abelian
sheaves. In the analogy between function fields and number fields, abelian
sheaves are counterparts of abelian varieties. In this article we study the
moduli spaces of abelian sheaves and prove that they are algebraic stacks. We
further transfer results of Cerednik--Drinfeld and Rapoport--Zink on the
uniformization of Shimura varieties to the setting of abelian sheaves. Actually
the analogy of the Cerednik--Drinfeld uniformization is nothing but the
uniformization of the moduli schemes of Drinfeld modules by the Drinfeld upper
half space. Our results generalise this uniformization. The proof closely
follows the ideas of Rapoport--Zink. In particular, analogies of -divisible
groups play an important role. As a crucial intermediate step we prove that in
a family of abelian sheaves with good reduction at infinity, the set of points
where the abelian sheaf is uniformizable in the sense of Anderson, is formally
closed.Comment: Final version, appears in "Number Fields and Function Fields - Two
Parallel Worlds", Papers from the 4th Conference held on Texel Island, April
2004, edited by G. van der Geer, B. Moonen, R. Schoo
The p-adic Uniformization of Shimura Curves
Introduction Let us denote by the complex manifold C n R by X. The group Gl 2 (R) acts via linear fractional transformations from the left on X. We consider arithmetically defined subgroups \Gamma ae Gl 2 (R), which are obtained as follows. Let D be a quaternion division algebra over a totally real number field F . We assume that there is a single archimedean place ff : F ! R such that D splits in ff: D\Omega F;ff R ¸ = M 2 (R) At all other archimedian places D is a division algebra. Let G be the multiplicative group of D considered as an algebraic group over Q . We have a natural decom