7,392 research outputs found

    Space-time evolution of Dirac wave packets

    Full text link
    In this work we study the dynamics of free 3D relativistic Gaussian wave packets with different spin polarization. We analyze the connection between the symmetry of initial state and the dynamical characteristics of moving particle. The corresponding solutions of Dirac equation having different types of symmetry were evaluated analytically and numerically and after that the electron probability densities, as well as, the spin densities were visualized. The average values of velocity of the packet center and the average spin were calculated analytically, and the parameters of transient Zitterbewegung in different directions were obtained. These results can be useful for the interpretation of future experiments with trapped ions.Comment: 10 pages, 7 figure

    Would You Choose to be Happy? Tradeoffs Between Happiness and the Other Dimensions of Life in a Large Population Survey

    Get PDF
    A large literature documents the correlates and causes of subjective well-being, or happiness. But few studies have investigated whether people choose happiness. Is happiness all that people want from life, or are they willing to sacrifice it for other attributes, such as income and health? Tackling this question has largely been the preserve of philosophers. In this article, we find out just how much happiness matters to ordinary citizens. Our sample consists of nearly 13,000 members of the UK and US general populations. We ask them to choose between, and make judgments over, lives that are high (or low) in different types of happiness and low (or high) in income, physical health, family, career success, or education. We find that people by and large choose the life that is highest in happiness but health is by far the most important other concern, with considerable numbers of people choosing to be healthy rather than happy. We discuss some possible reasons for this preference

    Quantum phase transitions in disordered dimerized quantum spin models and the Harris criterion

    Get PDF
    We use quantum Monte Carlo simulations to study effects of disorder on the quantum phase transition occurring versus the ratio g=J/J' in square-lattice dimerized S=1/2 Heisenberg antiferromagnets with intra- and inter-dimer couplings J and J'. The dimers are either randomly distributed (as in the classical dimer model), or come in parallel pairs with horizontal or vertical orientation. In both cases the transition violates the Harris criterion, according to which the correlation-length exponent should satisfy nu >= 1. We do not detect any deviations from the three-dimensional O(3) universality class obtaining in the absence of disorder (where nu = 0.71). We discuss special circumstances which allow nu<1 for the type of disorder considered here.Comment: 4+ pages, 3 figure

    Spectral methods for the wave equation in second-order form

    Get PDF
    Current spectral simulations of Einstein's equations require writing the equations in first-order form, potentially introducing instabilities and inefficiencies. We present a new penalty method for pseudo-spectral evolutions of second order in space wave equations. The penalties are constructed as functions of Legendre polynomials and are added to the equations of motion everywhere, not only on the boundaries. Using energy methods, we prove semi-discrete stability of the new method for the scalar wave equation in flat space and show how it can be applied to the scalar wave on a curved background. Numerical results demonstrating stability and convergence for multi-domain second-order scalar wave evolutions are also presented. This work provides a foundation for treating Einstein's equations directly in second-order form by spectral methods.Comment: 16 pages, 5 figure

    A model problem for the initial-boundary value formulation of Einstein's field equations

    Full text link
    In many numerical implementations of the Cauchy formulation of Einstein's field equations one encounters artificial boundaries which raises the issue of specifying boundary conditions. Such conditions have to be chosen carefully. In particular, they should be compatible with the constraints, yield a well posed initial-boundary value formulation and incorporate some physically desirable properties like, for instance, minimizing reflections of gravitational radiation. Motivated by the problem in General Relativity, we analyze a model problem, consisting of a formulation of Maxwell's equations on a spatially compact region of spacetime with timelike boundaries. The form in which the equations are written is such that their structure is very similar to the Einstein-Christoffel symmetric hyperbolic formulations of Einstein's field equations. For this model problem, we specify a family of Sommerfeld-type constraint-preserving boundary conditions and show that the resulting initial-boundary value formulations are well posed. We expect that these results can be generalized to the Einstein-Christoffel formulations of General Relativity, at least in the case of linearizations about a stationary background.Comment: 25 page

    The resultant on compact Riemann surfaces

    Full text link
    We introduce a notion of resultant of two meromorphic functions on a compact Riemann surface and demonstrate its usefulness in several respects. For example, we exhibit several integral formulas for the resultant, relate it to potential theory and give explicit formulas for the algebraic dependence between two meromorphic functions on a compact Riemann surface. As a particular application, the exponential transform of a quadrature domain in the complex plane is expressed in terms of the resultant of two meromorphic functions on the Schottky double of the domain.Comment: 44 page

    Optimal Constraint Projection for Hyperbolic Evolution Systems

    Get PDF
    Techniques are developed for projecting the solutions of symmetric hyperbolic evolution systems onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These optimal projections map a field configuration to the ``nearest'' configuration in the constraint submanifold, where distances between configurations are measured with the natural metric on the space of dynamical fields. The construction and use of these projections is illustrated for a new representation of the scalar field equation that exhibits both bulk and boundary generated constraint violations. Numerical simulations on a black-hole background show that bulk constraint violations cannot be controlled by constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection. Simulations also show that constraint violations entering through boundaries cannot be controlled by constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical solutions to the pathological scalar field system are shown to converge to solutions of a standard representation of the scalar field equation when constraint projection and constraint-preserving boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure

    Search for Low Mass Exotic mesonic structures. Part II: attempts to understand the experimental results

    Full text link
    Our previous paper, part I of the same study, shows the different experimental spectra used to conclude on the genuine existence of narrow, weakly excited mesonic structures, having masses below and a little above the pion (M=139.56 MeV) mass. This work \cite{previous} was instigated by the observation, in the Σ+\Sigma^{+} disintegration: Σ+\Sigma^{+}\topP0^{0}, P0μμ+^{0}\to\mu^{-}\mu^{+} \cite{park}, of a narrow range of dimuon masses. The authors conclude on the existence of a neutral intermediate state P0_{0}, with a mass M=214.3 MeV ±\pm 0.5 MeV. We present here some attempts to understand the possible nature of the structures observed in part I.Comment: 3 pages, 4 figures. Follows 0710.1796. Both replace arXiv:0707.1261 [nucl-ex

    Observation of Parity Nonconservation in Møller Scattering

    Get PDF
    We report a measurement of the parity-violating asymmetry in fixed target electron-electron (Møller) scattering: A_(PV) = [-175 ± 30(stat)± 20(syst)] X 10^(-9). This first direct observation of parity nonconservation in Møller scattering leads to a measurement of the electron’s weak charge at low energy Q^e_W = -0:053 ± 0:011. This is consistent with the standard model expectation at the current level of precision: sin^2θ_W = (M_Z)_(MS) = 0:2293 ± 0:0024(stat) ± 0:0016(syst) ± 0:0006(theory)

    Instability and `Sausage-String' Appearance in Blood Vessels during High Blood Pressure

    Get PDF
    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent. Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.Comment: 4 pages, 4 figures submitted to Physical Review Letter
    corecore