1,536 research outputs found
Orbital frustration at the origin of the magnetic behavior in LiNiO2
We report on the ESR, magnetization and magnetic susceptibility measurements
performed over a large temperature range, from 1.5 to 750 K, on high-quality
stoichiometric LiNiO2. We find that this compound displays two distinct
temperature regions where its magnetic behavior is anomalous. With the help of
a statistical model based on the Kugel'-Khomskii Hamiltonian, we show that
below T_of ~ 400 K, an orbitally-frustrated state characteristic of the
triangular lattice is established. This then gives a solution to the
long-standing controversial problem of the magnetic behavior in LiNiO2.Comment: 5 pages, 5 figures, RevTex, accepted in PR
Twin polaritons in semiconductor microcavities
The quantum correlations between the beams generated by polariton pair
scattering in a semiconductor microcavity above the parametric oscillation
threshold are computed analytically. The influence of various parameters like
the cavity-exciton detuning, the intensity mismatch between the signal and
idler beams and the amount of spurious noise is analyzed. We show that very
strong quantum correlations between the signal and idler polaritons can be
achieved. The quantum effects on the outgoing light fields are strongly reduced
due to the large mismatch in the coupling of the signal and idler polaritons to
the external photons
Non-critically squeezed light via spontaneous rotational symmetry breaking
We theoretically address squeezed light generation through the spontaneous
breaking of the rotational invariance occuring in a type I degenerate optical
parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with
spherical mirrors, in which the signal and idler fields correspond to first
order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape
of a Hermite-Gauss mode, within the linearized theory. This occurs at any
pumping level above threshold, hence the phenomenon is non-critical.
Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are
shown to have a small impact, hence the result is not singular.Comment: 4 pages, 1 figure, replaced with resubmitted versio
Thermal and dissipative effects in Casimir physics
We report on current efforts to detect the thermal and dissipative
contributions to the Casimir force. For the thermal component, two experiments
are in progress at Dartmouth and at the Institute Laue Langevin in Grenoble.
The first experiment will seek to detect the Casimir force at the largest
explorable distance using a cylinder-plane geometry which offers various
advantages with respect to both sphere-plane and parallel-plane geometries. In
the second experiment, the Casimir force in the parallel-plane configuration is
measured with a dedicated torsional balance, up to 10 micrometers. Parallelism
of large surfaces, critical in this configuration, is maintained through the
use of inclinometer technology already implemented at Grenoble for the study of
gravitationally bound states of ultracold neutrons, For the dissipative
component of the Casimir force, we discuss detection techniques based upon the
use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although
quite challenging, this triad of experimental efforts, if successful, will give
us a better knowledge of the interplay between quantum and thermal fluctuations
of the electromagnetic field and of the nature of dissipation induced by the
motion of objects in a quantum vacuum.Comment: Contribution to QFEXT'06, appeared in special issue of Journal of
Physics
Strategies for protecting intellectual property when using CUDA applications on graphics processing units
Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering
Transverse-mode coupling in a Kerr medium
We analyze nonlinear transverse mode coupling in a Kerr medium placed in an
optical cavity and its influence on bistability and different kinds of quantum
noise reduction. Even for an input beam that is perfectly matched to a cavity
mode, the nonlinear coupling produces an excess noise in the fluctuations of
the output beam. Intensity squeezing seems to be particularly robust with
respect to mode coupling, while quadrature squeezing is more sensitive.
However, it is possible to find a mode the quadrature squeezing of which is not
affected by the coupling.Comment: 11 pages, 6 figures, LaTe
Quantum interference of ultrastable twin optical beams
We report the first measurement of the quantum phase-difference noise of an
ultrastable nondegenerate optical parametric oscillator that emits twin beams
classically phase-locked at exact frequency degeneracy. The measurement
illustrates the property of a lossless balanced beam-splitter to convert
number-difference squeezing into phase-difference squeezing and, thus, provides
indirect evidence for Heisenberg-limited interferometry using twin beams. This
experiment is a generalization of the Hong-Ou-Mandel interference effect for
continuous variables and constitutes a milestone towards continuous-variable
entanglement of bright, ultrastable nondegenerate beams.Comment: 4 pages, 4 figs, accepted by Phys. Rev. Let
Casimir torque between corrugated metallic plates
We consider two parallel corrugated plates and show that a Casimir torque
arises when the corrugation directions are not aligned. We follow the
scattering approach and calculate the Casimir energy up to second order in the
corrugation amplitudes, taking into account nonspecular reflections,
polarization mixing and the finite conductivity of the metals. We compare our
results with the proximity force approximation, which overestimates the torque
by a factor 2 when taking the conditions that optimize the effect. We argue
that the Casimir torque could be measured for separation distances as large as
1 Comment: 7 pages, 3 figures, contribution to QFEXT07 proceeding
- …
