563 research outputs found

    Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Full text link
    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the 3He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of 3He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid 10B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here

    Proof of Bose-Einstein Condensation for Interacting Gases with a One-Particle Spectral Gap

    Full text link
    Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems

    Some Restrictions Abroad Affecting Corporations

    Get PDF
    A neutron detector concept based on solid layers of boron carbide enriched in 1 B has been in development for the last few years as an alternative for He-3 by collaboration between the ILL, ESS and Linkoping University. This Multi-Grid detector uses layers of aluminum substrates coated with (B4C)-B-10 on both sides that are traversed by the incoming neutrons. Detection is achieved using a gas counter readout principle. By segmenting the substrate and using multiple anode wires, the detector is made inherently position sensitive. This development is aimed primarily at neutron scattering instruments with large detector areas, such as time-of-flight chopper spectrometers. The most recent prototype has been built to be interchangeable with the He-3 detectors of IN6 at ILL. The 1 B detector has an active area of 32 x 48 cm(2). It was installed at the IN6 instrument and operated for several weeks, collecting data in parallel with the regularly scheduled experiments, thus providing the first side-by-side comparison with the conventional He-3 detectors. Results include an efficiency comparison, assessment of the in-detector scattering contribution, sensitivity to gamma-rays and the signal-to-noise ratio in time-of-flight spectra. The good expected performance has been confirmed with the exception of an unexpected background count rate. This has been identified as natural alpha activity in aluminum. New convertor substrates are under study to eliminate this source of background

    Equivalence of Bose-Einstein condensation and symmetry breaking

    Full text link
    Based on a classic paper by Ginibre [Commun. Math. Phys. {\bf 8} 26 (1968)] it is shown that whenever Bogoliubov's approximation, that is, the replacement of a_0 and a_0^* by complex numbers in the Hamiltonian, asymptotically yields the right pressure, it also implies the asymptotic equality of ||^2/V and /V in symmetry breaking fields, irrespective of the existence or absence of Bose-Einstein condensation. Because the former was proved by Ginibre to hold for absolutely integrable superstable pair interactions, the latter is equally valid in this case. Apart from Ginibre's work, our proof uses only a simple convexity inequality due to Griffiths.Comment: An error in my summary of previous results (the definition of F') is corrected. The correction is to be done also in the PR

    A restatement of the natural science evidence base concerning grassland management, grazing livestock and soil carbon storage

    Get PDF
    Approximately a third of all annual greenhouse gas emissions globally are directly or indirectly associated with the food system, and over a half of these are linked to livestock production. In temperate oceanic regions, such as the UK, most meat and dairy is produced in extensive systems based on pasture. There is much interest in the extent to which such grassland may be able to sequester and store more carbon to partially or completely mitigate other greenhouse gas emissions in the system. However, answering this question is difficult due to context-specificity and a complex and sometimes inconsistent evidence base. This paper describes a project that set out to summarize the natural science evidence base relevant to grassland management, grazing livestock and soil carbon storage potential in as policy-neutral terms as possible. It is based on expert appraisal of a systematically assembled evidence base, followed by a wide stakeholders engagement. A series of evidence statements (in the appendix of this paper) are listed and categorized according to the nature of the underlying information, and an annotated bibliography is provided in the electronic supplementary material

    THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT

    Full text link
    We consider a directed random walk making either 0 or +1+1 moves and a Brownian bridge, independent of the walk, conditioned to arrive at point bb on time TT. The Hamiltonian is defined as the sum of the square of increments of the bridge between the moments of jump of the random walk and interpreted as an energy function over the bridge connfiguration; the random walk acts as the random environment. This model provides a continuum version of a model with some relevance to protein conformation. The thermodynamic limit of the specific free energy is shown to exist and to be self-averaging, i.e. it is equal to a trivial --- explicitly computed --- random variable. An estimate of the asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip

    Anomalous fluctuations of the condensate in interacting Bose gases

    Full text link
    We find that the fluctuations of the condensate in a weakly interacting Bose gas confined in a box of volume VV follow the law V4/3\sim V^{4/3}. This anomalous behaviour arises from the occurrence of infrared divergencies due to phonon excitations and holds also for strongly correlated Bose superfluids. The analysis is extended to an interacting Bose gas confined in a harmonic trap where the fluctuations are found to exhibit a similar anomaly.Comment: 4 pages, RevTe

    Deep subcutaneous application of poly-L-lactic acid as a filler for facial lipoatrophy in HIV-infected patients

    Get PDF
    Introduction: Facial lipoatrophy is a crucial problem of HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Poly-L-lactic acid (PLA), provided as New-Fill(R)/Sculptra(TM), is known as one possible treatment option. In 2004 PLA was approved by the FDA as Sculptra(TM) for the treatment of lipoatrophy of the face in HIV-infected patients. While the first trials demonstrated relevant efficacy, this was to some extent linked to unwanted effects. As the depth of injection was considered relevant in this context, the application modalities of the preparation were changed. The preparation was to be injected more deeply into subcutaneous tissue, after increased dilution. Material and Methods: To test this approach we performed a pilot study following the new recommendations in 14 patients. Results: While the efficacy turned out to be about the same, tolerability was markedly improved. The increase in facial dermal thickness was particularly obvious in those patients who had suffered from lipoatrophy for a comparatively small period of time. Conclusion: With the new recommendations to dilute PLA powder and to inject it into the deeper subcutaneous tissue nodule formation is a minor problem. However, good treatment results can only be achieved if lipoatrophy is not too intense; treatment intervals should be about 2 - 3 weeks. Copyright (C) 2005 S. Karger AG, Basel

    Density of states for the π\pi-flux state with bipartite real random hopping only: A weak disorder approach

    Full text link
    Gade [R. Gade, Nucl. Phys. B \textbf{398}, 499 (1993)] has shown that the local density of states for a particle hopping on a two-dimensional bipartite lattice in the presence of weak disorder and in the absence of time-reversal symmetry(chiral unitary universality class) is anomalous in the vicinity of the band center ϵ=0\epsilon=0 whenever the disorder preserves the sublattice symmetry. More precisely, using a nonlinear-sigma-model that encodes the sublattice (chiral) symmetry and the absence of time-reversal symmetry she argues that the disorder average local density of states diverges as ϵ1exp(clnϵκ)|\epsilon|^{-1}\exp(-c|\ln\epsilon|^\kappa) with cc some non-universal positive constant and κ=1/2\kappa=1/2 a universal exponent. Her analysis has been extended to the case when time-reversal symmetry is present (chiral orthogonal universality class) for which the same exponent κ=1/2\kappa=1/2 was predicted. Motrunich \textit{et al.} [O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B \textbf{65}, 064206 (2001)] have argued that the exponent κ=1/2\kappa=1/2 does not apply to the typical density of states in the chiral orthogonal universality class. They predict that κ=2/3\kappa=2/3 instead. We confirm the analysis of Motrunich \textit{et al.} within a field theory for two flavors of Dirac fermions subjected to two types of weak uncorrelated random potentials: a purely imaginary vector potential and a complex valued mass potential. This model is believed to belong to the chiral orthogonal universality class. Our calculation relies in an essential way on the existence of infinitely many local composite operators with negative anomalous scaling dimensions.Comment: 30 pages, final version published in PR
    corecore