We consider a directed random walk making either 0 or +1 moves and a
Brownian bridge, independent of the walk, conditioned to arrive at point b on
time T. The Hamiltonian is defined as the sum of the square of increments of
the bridge between the moments of jump of the random walk and interpreted as an
energy function over the bridge connfiguration; the random walk acts as the
random environment. This model provides a continuum version of a model with
some relevance to protein conformation. The thermodynamic limit of the specific
free energy is shown to exist and to be self-averaging, i.e. it is equal to a
trivial --- explicitly computed --- random variable. An estimate of the
asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip