4,188 research outputs found
Z_3 Strings and their Interactions
We construct Z_3 vortex solutions in a model in which SU(3) is spontaneously
broken to Z_3. The model is truncated to one in which there are only two
dimensionless free parameters and the interaction of vortices within this
restricted set of models is studied numerically. We find that there is a curve
in the two dimensional space of parameters for which the energy of two
asymptotically separated vortices equals the energy of the vortices at
vanishing separation. This suggests that the inter-vortex potential for Z_3
strings might be flat for these couplings, much like the case of U(1) strings
in the Bogomolnyi limit. However, we argue that the intervortex potential is
attractive at short distances and repulsive at large separations leading to the
possibility of unstable bound states of Z_3 vortices.Comment: 8 pages; mainly corrected typos in table
Characterization of a novel reassortant H5N6 highly pathogenic avian influenza virus clade 2.3.4.4 in Korea, 2017
Grazing-incidence small-angle X-ray scattering studies on templating nanopores in networked polymer thin films with a multi-armed porogen
The mechanism of thermal pore generation in organosilicate thin films loaded with a six-armed star-shaped poly(epsilon-caprolactone) porogen was quantitatively investigated by using in-situ grazing-incidence small-angle X-ray scattering and thermogravimetry. These analyses found that the blend components have a limited miscibility that depends on the compositionfor porogen loadings up to only 20 wt%, molecularly miscible blend films were obtained. Even for the miscible blend films, heating the films produced a curing reaction of the precursor matrix component, leading to the phase separation of the porogen component. This phase separation was found to begin at 393 K for 10 wt% porogen loaded films and at 373 K for 20 wt% porogen loaded films, and to continue for temperatures up to 423 K. The porogen aggregates remained and were confined within the matrix film without any further growth or movement until complete thermal decomposition above 564 K.ope
Spectrum of confining strings in SU(N) gauge theories
We study the spectrum of the confining strings in four-dimensional SU(N)
gauge theories. We compute, for the SU(4) and SU(6) gauge theories formulated
on a lattice, the string tensions sigma_k related to sources with Z_N charge k,
using Monte Carlo simulations. Our results are consistent with the sine formula
sigma_k/sigma = sin k pi/N / sin pi/N for the ratio between sigma_k and the
standard string tension sigma.
For the SU(4) and SU(6) cases the accuracy is approximately 1% and 2%,
respectively. The sine formula is known to emerge in various realizations of
supersymmetric SU(N) gauge theories. On the other hand, our results show
deviations from Casimir scaling. We also discuss an analogous behavior
exhibited by two-dimensional SU(N) x SU(N) chiral models.Comment: Latex, 34 pages, 10 figures. Results of new SU(4) simulations added.
The new data are included in the analysis, leading to improved final
estimates for SU(4). Conclusions unchange
Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities
IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells
Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
Development of the C-Band BPM System for ATF2
The ATF2 international collaboration is intending to demonstrate nanometre beam sizes required for the future Linear Colliders. An essential part of the beam diagnostics needed to achieve that goal is the high resolution cavity beam position monitors (BPMs). In this paper we report on the C-band system consisting of 32 BPMs spread over the whole length of the new ATF2 extraction beamline. We discuss the design of the BPMs and electronics, main features of the DAQ system, and the first operational experience with these BPMs
Antimony-Doped Tin(II) Sulfide Thin Films
Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and nontoxic solar cells. SnS has always been observed to be a p-type semiconductor. Doping SnS to form an n-type semiconductor would permit the construction of solar cells with p-n homojunctions. This paper reports doping SnS films with antimony, a potential n-type dopant. Small amounts of antimony (1%) were found to greatly increase the electrical resistance of the SnS. The resulting intrinsic SnS(Sb) films could be used for the insulating layer in a p-i-n design for solar cells. Higher concentrations (5%) of antimony did not convert the SnS(Sb) to low-resistivity n-type conductivity, but instead the films retain such a high resistance that the conductivity type could not be determined. Extended X-ray absorption fine structure analysis reveals that the highly doped films contain precipitates of a secondary phase that has chemical bonds characteristic of metallic antimony, rather than the antimony–sulfur bonds found in films with lower concentrations of antimony.United States. Dept. of Energy. Sunshot Initiative (Contract DE-EE0005329)National Science Foundation (U.S.) (Grant CBET-1032955
- …
