773 research outputs found

    Stratospheric isotopic water profiles from a single submillimeter limb scan by TELIS

    Get PDF
    Around 490 GHz relatively strong HDO and H<sub>2</sub><sup>18</sup>O emission lines can be found in the submillimeter thermal-emission spectrum of the Earth's atmosphere, along with lines of the principal isotopologue of water vapour. These can be used for remote sensing of the rare/principal isotope ratio in the stratosphere. A sensitivity study has been performed for retrieval simulations of water isotopologues from balloon-borne measurements by the limb sounder TELIS (TErahertz and submillimeter LImb Sounder). The study demonstrates the capability of TELIS to determine, from a single limb scan, the profiles for H<sub>2</sub><sup>18</sup>O and HDO between 20 km and 37 km with a retrieval error of ≈3 and a spatial resolution of 1.5 km, as determined by the width of the averaging kernel. In addition HDO can be retrieved in the range of 10–20 km, albeit with a strongly deteriorated retrieval error. Expected uncertainties in instrumental parameters have only limited impact on the retrieval results

    Scattering Angles in Kerr Metrics

    Get PDF
    Scattering angles for probes in Kerr metrics are derived for scattering in the equatorial plane of the black hole. We use a method that naturally resums all orders in the spin of the Kerr black hole, thus facilitating comparisons with scattering-angle computations based on the Post-Minkowskian expansion from scattering amplitudes or worldline calculations. We extend these results to spinning black-hole probes up to and including second order in the probe spin and any order in the Post- Minkowskian expansion, for probe spins aligned with the Kerr spin. When truncating to third Post-Minkowskian order, our results agree with those obtained by amplitude and worldline methods

    Embracing complexity in international forest governance: a way forward; Policy Brief

    Get PDF
    This Policy Brief summarizes the findings of a comprehensive assessment of scientific information about international forest governance carried out by an Expert Panel of over 30 of the world's leading scientists working in the areas of environmental governance and international forest law. It aims to provide policy and decision makers with essential knowledge and building blocks required for a more effective and inclusive governance of the world's forest

    A New Proposal for the Picture Changing Operators in the Minimal Pure Spinor Formalism

    Full text link
    Using a new proposal for the "picture lowering" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green's function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.Comment: 56 pages, typos correcte

    Calculation of a Class of Three-Loop Vacuum Diagrams with Two Different Mass Values

    Get PDF
    We calculate analytically a class of three-loop vacuum diagrams with two different mass values, one of which is one-third as large as the other, using the method of Chetyrkin, Misiak, and M\"{u}nz in the dimensional regularization scheme. All pole terms in \epsilon=4-D (D being the space-time dimensions in a dimensional regularization scheme) plus finite terms containing the logarithm of mass are kept in our calculation of each diagram. It is shown that three-loop effective potential calculated using three-loop integrals obtained in this paper agrees, in the large-N limit, with the overlap part of leading-order (in the large-N limit) calculation of Coleman, Jackiw, and Politzer [Phys. Rev. D {\bf 10}, 2491 (1974)].Comment: RevTex, 15 pages, 4 postscript figures, minor corrections in K(c), Appendix B removed, typos corrected, acknowledgements change

    Minimizing the Total Completion Time On-line on a Single Machine, Using Restarts

    Get PDF
    We give an algorithm to minimize the total completion time on-line on a single machine, using restarts, with a competitive ratio of 3/2. The optimal competitive ratio without using restarts is 2 for deterministic algorithms and e/(e1)approx1.582e/(e-1) approx 1.582 for randomized algorithms. This is the first restarting algorithm to minimize the total completion time that is proved to be better than an algorithm that does not restart

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page
    corecore