
J Sched (2010) 13: 561–576
DOI 10.1007/s10951-010-0181-1

Minimizing total weighted tardiness on a single machine
with release dates and equal-length jobs

J.M. van den Akker · G. Diepen · J.A. Hoogeveen

Published online: 1 May 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper we study the problem of schedul-
ing n jobs with release dates, due dates, weights, and equal
processing times on a single machine. The objective is to
minimize total weighted tardiness. We formulate the prob-
lem as a time-indexed ILP after which we solve the LP-
relaxation. We show that for certain special cases (namely
when either all due dates, all weights, or all release dates are
equal, or when all due dates and release dates are equally
ordered), the solution for the LP-relaxation is either inte-
gral or can be adjusted in polynomial time into an inte-
gral one. For the general case we present a branching rule
that performs well. Furthermore we show that the same ap-
proach holds for the m identical, parallel machines variant
of the problem. Finally we show that with a minor modifica-
tion the same approach also holds for the single-machine
problems of minimizing the sum of weighted late jobs
(1|rj ,pj = p|∑wjUj) and the sum of weighted late work
(1|rj ,pj = p|∑wjVj) as well as their respective variants
with m identical, parallel machines. We further show how
we can solve these problems by applying column genera-

Supported by BSIK grant 03018 (BRICKS: Basic Research in
Informatics for Creating the Knowledge Society).

J.M. van den Akker · J.A. Hoogeveen
Department of Computer Science, Utrecht University,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

J.M. van den Akker
e-mail: marjan@cs.uu.nl

J.A. Hoogeveen
e-mail: slam@cs.uu.nl

G. Diepen (�)
Paragon Decision Technology, Schipholweg 1, 2034 LS Haarlem,
The Netherlands
e-mail: Guido.Diepen@aimms.com

tion when there is not sufficient memory available to apply
the direct ILP-approach.

Keywords Common processing time · Weighted
tardiness · Time indexed formulation

1 Introduction

The problem we are looking at is the following: We have
a single machine on which we have to schedule a set N =
{1,2, . . . , n} of jobs, where n is the number of jobs. For each
job Jj we have a release date rj before which job Jj is not
available, a due date dj , and a weight wj . The processing
times of the jobs are all equal to p. We assume the due dates,
the release dates, the weights, and the common processing
time of all jobs to be integral. We are looking for a feasible
schedule, that is, we want to find a set of completion times
Cj (j = 1, . . . , n) such that no job starts before its release
date and no two jobs overlap in their execution. Given the
completion time Cj of a job Jj , we define the tardiness Tj

of job Jj as:

Tj = max{0,Cj − dj }.
Now the objective is to find the feasible schedule that mini-
mizes the total weighted tardiness. To the best of our knowl-
edge the computational complexity of this problem is still
open.

For writing down the different problems we make use
of the three-field notation scheme introduced by Graham
et al. (1979). In this three-field notation scheme the prob-
lem of minimizing total weighted tardiness on a single ma-
chine with release dates and equal-length jobs is denoted as
1|rj ,pj = p|∑wjTj .

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81617609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marjan@cs.uu.nl
mailto:slam@cs.uu.nl
mailto:Guido.Diepen@aimms.com

562 J Sched (2010) 13: 561–576

Over the years quite some research has been done on
scheduling problems regarding (weighted) tardiness. Lawler
(1977) gave a pseudopolynomial algorithm for solving the
1 ‖ Tj problem and Du and Leung (1990) gave a proof for
the 1 ‖ Tj problem to be N P -hard in the ordinary sense. The
weighted version of this problem, 1 ‖ wjTj , is known to be
N P -hard in the strong sense (Lenstra et al. 1977). Akturk
and Ozdemir (2001) gave a new dominance rule for solv-
ing the 1|rj |wjTj problem to optimality using branch-and-
bound.

Also quite some research has been done on scheduling
problems with equal processing times: Baptiste (2000) looks
at the 1|rj ,pj = p|∑Tj problem, as well as the prob-
lem with m identical, parallel machines instead of one and
shows that both problems can be solved in polynomial time
by means of dynamic programming. Baptiste (1999) gives
a polynomial time algorithm for the 1|rj ,pj = p|∑wjUj

problem based on dynamic programming. In Baptiste et al.
(2004) ten equal-processing-time scheduling problems are
shown to be solvable in polynomial time, among which is
the Pm|rj ,pj = p|∑wjUj problem. An overview of more
problems with equal processing times can be found in Leung
(2004).

Verma and Dessouky (1998) look at common processing
time scheduling with earliness and tardiness penalties. They
formulate this problem as a time-indexed ILP and show that
when certain criteria are met, there exists an integral optimal
solution to the LP-relaxation, which means that there exists
a polynomial time solution procedure. In this paper we will
follow their approach, and we will show that if certain cri-
teria hold, then the 1|rj ,pj = p|∑wjTj problem can be
solved in polynomial time.

The outline for the rest of this paper is as follows: In
Sect. 2 we give an ILP-formulation of the problem. In Sect. 3
we will present an algorithm that can be used to rewrite frac-
tional solutions for the single-machine problem that possess
a special condition of being non-double nested. In Sect. 4
we will discuss the special case of the problem in which the
jobs have a common due date, and in Sect. 5 we will discuss
the general problem. In Sect. 6 we will apply the same tech-
niques on problems with related objective functions for the
single-machine case, and in Sect. 7 we look at the case with
m parallel, identical machines. After that in Sect. 8 we will
discuss another way of solving the problem, which aims at
reducing the amount of memory needed, and in Sect. 9 we
will present some experimental results. Finally in Sect. 10
we will draw some conclusions.

2 Problem formulation

Like in Verma and Dessouky (1998), we use a time-indexed
formulation to represent the problem as an ILP. We restrict

ourselves to those times that can occur as completion times
in an optimal solution. Because of the equal processing
times, the processing of a job will always occur in an inter-
val with length p. We denote each interval by the end time of
the interval. The objective function that we consider is total
weighted tardiness, and since this is a regular function, there
will always exists an optimal schedule that is left-aligned,
that is, it is not possible to execute any job earlier without
postponing any other job.

Since there exists an optimal schedule that is left-aligned,
we can restrict ourselves to schedules in which each job, ei-
ther starts at its release date, or immediately after another
job. Hence, each release date introduces a set of possible
completions times, and in the extreme case some job Jj will
start right at its release date after which all other jobs fol-
low contiguously. This means that job Jj introduces (n − 1)

possible completion times for the other jobs.
Unless another job Jj ′ has a release date that is a mul-

tiple of p before rj , only job Jj can be completed at time
γj = rj + p. We define the set G denoting all first possible
completion times of all jobs by

G :=
n⋃

j=1

{γj }.

We define the set Mj as the set of possible completion times
introduced by job Jj as

Mj = {rj + 2p, rj + 3p, . . . , rj + np},
and the set K containing all other possible completion times
as

K :=
n⋃

j=1

Mj.

Since the first possible completion time of job Jj is γj , we
find that the set of possible completion times of a job Jj is

Aj := {t ∈ K|t > rj + p} ∪ {γj }.
Since the capacity of the machine is equal to 1, completing
a job Jj at time t implies that no other job Jj ′ can have a
completion time that is fewer than p time units before t .
For a given time t , we define Ht as the set of preceding
completion times conflicting with t as

Ht := {
t ′ ∈ K ∪ G

∣
∣0 ≤ t − t ′ < p

}
.

Now we formulate the problem as a time-indexed ILP
model. For the ILP-formulation we define a variable xj,t for
all relevant j and t as

xj,t =
{

1 if job Jj is completed at time t ,

0 otherwise.

J Sched (2010) 13: 561–576 563

Furthermore we define the cost cj,t of having job Jj being
completed at time t as

cj,t = wj max{0, t − dj }.

Now the complete ILP model becomes

min z =
n∑

j=1

∑

t∈Aj

cj,t xj,t

subject to

∑

t∈Aj

xj,t = 1 for all j ∈ N , (1)

n∑

j=1

∑

t ′∈Ht∩Aj

xj,t ′ ≤ 1 for all t ∈ K ∪ G, (2)

xj,t ∈ {0,1} for all j ∈ N , t ∈ Aj , (3)

where constraint (1) ensures that all jobs are assigned to ex-
actly one interval and constraint (2) ensures that for any time
interval no more than one job is processed.

Verma and Dessouky (1998) look at the single-machine
scheduling of equal-length jobs with both earliness and tar-
diness penalties, where earliness for job Jj is defined as
Ej = max{0, dj − Cj }. In the three-field notation scheme
this problem is 1|pj = p|∑αjEj + βjTj , where αj is the
earliness penalty for job Jj and βj is the tardiness penalty
for job Jj . Since they consider earliness penalties, some-
times it can be beneficial to introduce idle time before start-
ing to process a job. They use the same time-indexed formu-
lation. Except for the objective function, which is reflected
in the values cjt , the only difference with our problem is the
presence of release dates. We build on their results. First, we
repeat some of their definitions.

Definition 1 (Verma and Dessouky 1998) Let x be a fea-
sible solution to the LP-relaxation. We say that job Jj2 is
nested in job Jj1 (j1 �= j2), if there exist values tk ∈ K ∪ G

(k = 1,2,3) such that t1 < t2 < t3 and xj1,t1 , xj2,t2 and xj1,t3

are all positive.

Definition 2 (Verma and Dessouky 1998) A feasible solu-
tion of the LP-relaxation is double nested if and only if there
exists a pair of jobs Jj1 and Jj2 which are nested in each
other. If no such pair of two jobs exists, then the solution is
called nested or non-double nested.

Verma and Dessouky (1998) use the term non-nested so-
lution instead of double-nested solution. For reasons of clar-
ity we changed this term into double nested.

For ease of writing we furthermore define the notation
1212 to denote that there exist xj1,t1 , xj2,t2 , xj1,t3 , and xj2,t4

with t1 < t2 < t3 < t4 all having value > 0 in the solution of
the LP.

Verma and Dessouky (1998) show that the 1|pj =
p|∑αjEj + βjTj problem is polynomially solvable if
the jobs can be indexed such that α1 ≤ α2 ≤ · · · ≤ αn and
β1 ≤ β2 ≤ · · · ≤ βn. To show this, they prove two results.
First, they prove that there exists an optimal solution to the
LP-relaxation that is non-double nested, and that in case
of a strict ordering, in which each inequality is strict, each
optimal solution is non-double nested. Second, they prove
that all extremal, non-double-nested solutions to the LP-
relaxation are integral. This settles the complexity of the
problem with the strict ordering; for the case with equal
weights they show how these equalities can be removed by
adding perturbations such that the resulting solution is still
optimal for the original problem.

The proof that each non-double-nested, extremal solution
of the LP-relaxation is integral is independent from the ob-
jective function, as it is solely based on the fact that if the
solution is nested, then the constraint matrix for the non-
zero columns (i.e. columns for which the value is greater
than 0) of the solution can be reordered in such a way that it
forms an interval matrix, which are known to be totally uni-
modular (Nemhauser and Wolsey 1988). Therefore, we can
use their results, if we show that the presence of the release
dates does not destroy their proofs. Since a release date rj

of job Jj implies that Jj cannot complete its execution at a
time t < rj + p, we only have to add a set of constraints of
the form xjt = 0 for these values of t . These constraints are
represented by unit rows in the constraint matrix and adding
a unit row to a totally unimodular matrix results in a matrix
which is also totally unimodular. Hence, we get the follow-
ing lemma.

Lemma 1 The result of Verma and Dessouky (1998) con-
cerning the integrality of any nested extremal solution are
not influenced by adding release dates.

Because of the result by Verma and Dessouky (1998) that
any nested extremal solution is integral, we can show that a
problem is solvable in polynomial time by showing that any
double-nested solution to the LP-relaxation is sub-optimal.
If this is not possible, then we must show that an optimal
double-nested solution can be converted into a non-double-
nested solution with equal cost, which then can be converted
into an integral solution with equal cost. Remark that per-
turbing the objective function can be done independently
from the addition of release dates as well; we will describe
this technique in the next section.

564 J Sched (2010) 13: 561–576

Fig. 1 Example of a fractional solution in the LP-relaxation

One important observation that has to be made is that al-
lowing fractional solutions in the LP-relaxation is not the
same as allowing preemption. With preemption you are al-
lowed to process some part of the job and after any time
that is smaller than the processing time, you may preempt it.
In our case, if jobs have fractional assignments, no preemp-
tion occurs: each job will always have the same processing
time, only a certain fraction of the work needed for the job is
processed in that time interval. An example of this situation
is given in Fig. 1. The maximum capacity of the machine is
equal to 1 (i.e. at most one job can be processed at the same
time). Job j1 has an integer allocation value, and therefore it
is completely processed in one given time interval, whereas
both jobs Jj2 and Jj3 each have fractional allocation values,
and hence they are both partially allocated to two different
time intervals.

3 Converting fractional non-double-nested solutions

In this section we present two algorithms to convert a frac-
tional solution that is non-double nested into an integral so-
lution with equal cost. The first one is a quick heuristic,
the success of which is not guaranteed; the second one is
based on the perturbation technique by Verma and Dessouky
(1998). We start with the heuristic. Given a fractional, non-
double-nested solution, we modify it, using a straightfor-
ward preprocessing routine, such that

– The assignment is left-aligned, that is, given that job Jj is
completed at time t , it is not possible to increase any value
xj,t ′ with rj + p ≤ t ′ < t , while keeping the assignment
values of the other jobs intact.

– There are no two jobs Ji and Jj that are both (partly)
assigned to the same pair of intervals.

We use the following algorithm to look for a feasible,
optimal, integral solution. Here we distinguish between ini-
tially full intervals and initially idle interval. An interval
[t, t + p] is called initially full, if the machine is working
at full capacity during the sub-interval [t, t + δ], where δ

is some small positive value, and it is called initially idle,
otherwise. In Fig. 1 for example, the first interval to which
job Jj2 has been assigned is initially idle, whereas the sec-
ond interval to which job Jj2 has been assigned is initially
full.

SELECTION ALGORITHM

– Start with the leftmost interval.
– If this interval is initially full, then pick a job assigned to

this interval in the following way:
• If there is only one job, pick this one.
• If there are two or more jobs assigned to this interval

and each one has been picked before, pick any of them.
• Otherwise, pick a job that has not been picked before;

if there are two (or more) such jobs, pick any job that
has been assigned to some earlier interval.

• Record the job-interval combination and move to the
interval that starts p time units later, unless this one
was the last interval.

– If the interval is initially idle, then pick any job that has
not been picked before; if all jobs have been picked be-
fore, then do not pick any job.

– Record the job-interval combination and move to the next
interval, unless this one was the last interval.

Theorem 1 If each job occurs in exactly one recorded
job-interval combination, then the schedule that is obtained
by assigning each job to the interval corresponding to
the selected job-interval combination is feasible and opti-
mal.

Proof We start by showing feasibility. Because of the Se-
lection Algorithm, the jobs are assigned to non-overlapping
intervals. Moreover, since each of the job to interval assign-
ments occurs in the fractional solution as well, we do not
violate any release dates. As each job is assigned exactly
once, the corresponding schedule is feasible.

Let Z, with corresponding values zj,t for all relevant
combinations of j and t , denote the assignment obtained
by the Selection Algorithm. Furthermore, let X with val-
ues xj,t denote the assignment found by solving the LP-
relaxation. Now we construct the assignment Y with values
yj,t = xj,t − εzj,t for all relevant combinations of j and t ,
where ε is equal to some small value that we determine ac-
cording to the following two constraints. First of all, ε has
to be no more than the smallest positive assignment value
in X. Because of this constraint, and since zj,t = 1 can oc-
cur only if xj,t > 0, we see that all yj,t ≥ 0. Moreover, ε

should be no more than the minimum amount of spare ma-
chine capacity that is available in the sub-interval [t, t + δ]
of any initially idle interval [t, t + p] from which no job
was picked. Because of this constraint, and since the Selec-
tion Algorithm always selects a job whenever the machine
is working at full capacity, the machine never requires more
capacity than 1 − ε to execute assignment Y . Furthermore,
the total amount of job Jj (j = 1, . . . , n) that has been as-
signed in Y is equal to 1 − ε.

Hence, if we multiply each yj,t value with a factor
1/(1 − ε), then we get another feasible solution, Y ′, to the

J Sched (2010) 13: 561–576 565

Fig. 2 Bad example for the Selection Algorithm

LP-relaxation. This implies that X can be written as a con-
vex combination of Y ′ and Z; because of the optimality of
X, assignment Z must be optimal, too. �

Unfortunately, the Selection Algorithm does not always
produce a feasible schedule. Consider the following exam-
ple (Fig. 2).

All jobs have release date 0, except for jobs Jb and Jc ,
the release dates of which coincide with the start points of
the first intervals they have been assigned to.

If we apply the Selection Algorithm, then we must select
one of the jobs Jd and Jk at time 0, and one of the jobs
Ji and Jj at time p. Suppose that we have chosen to select
jobs Jd and Jj . At time 2p we select job Ja , since this is
a yet unselected job in a partially idle interval. We continue
with Jb at time 3p, job Ji at time 4p, job Jc at time 5p,
job Jk at time 6p. At time 7p, we do not select any job,
since the interval is partially idle and job Jd has already been
selected. This assignment corresponds to a feasible schedule
that must be optimal according to Theorem 1.

If we alter the initial selection at times 0 and p to jobs Jd

and Ji , then we again select jobs Ja and Jb at times 2p and
3p, but at time 4p we are forced to select job Ji again, which
makes the Selection Algorithm to fail. We might change the
Selection Algorithm such that no job is picked at time 2p

(the interval is partially idle, and job Ja must appear later
again, since it has not been fully assigned yet), pick Jb at
time rb , pick job Ja at time rb + p, wait until time 5p to
pick job Jc, but then we fail at time 6p, since we cannot
pick jobs Jj and Jk both, which implies that one of these
jobs will not be selected at all.

Fortunately, Verma and Dessouky (1998) have described
a guaranteed way to convert a fractional solution that is
non-double nested into an integral solution with equal cost.
Since each extremal solution is integral, a fractional opti-
mal solution must be a convex combination of two or more
extremal solutions with equal cost. To exclude the possi-
bility that two extremal solutions have equal cost, Verma
and Dessouky (1998) add a small perturbation to the co-
efficients in the objective function; this perturbation is so
small that an extremal solution to the original problem that
is sub-optimal cannot become optimal for the perturbed
problem. Adding perturbations is done in the following

way:

cj,t = cj,t + jε

where ε is a very small positive number.

4 Common due date

In this section we look at the special case in which all jobs
j have a common due date dj = D. Depending upon the
size of D, we distinguish two variants. First, in Sect. 4.1 we
look at the case 0 ≤ D < rmin + p, where rmin is the small-
est release date of all jobs. For any value of D < rmin + p

we know that each job will be tardy, which implies that
we obtain an equivalent problem by putting D = 0. The
1|rj ,pj = p,dj = 0|∑wjTj problem is equivalent to the
1|rj ,pj = p|∑wjCj problem, for which Baptiste (2000)
already showed that it can be solved in polynomial time
(O(n7)) by means of dynamic programming. In Sect. 4.2 we
look at the case where D ≥ rmin + p; in this case it is possi-
ble to complete at least one job at or before the due date. For
both cases we assume without loss of generality that the jobs
are re-indexed such that w1 ≤ w2 ≤ w3 ≤ · · · ≤ wn. If after
re-indexing the jobs w1 < w2 < w3 < · · · < wn holds, then
we say that a strict order on the weight of the jobs exists.

4.1 Common due date equal to zero

Lemma 2 If there exists a strict order on the weight of the
jobs, then any optimal solution is nested. When no strict
order exists, then there exists an optimal schedule that is
nested.

Proof Assume we have an optimal solution that is double
nested. Therefore, according to Definition 2 there exist jobs
Jj1 and Jj2 that are nested in each other. Without loss of
generality we assume j1 < j2 (i.e. wj2 ≥ wj1). Let us now
look at the situation where job Jj1 is nested in job Jj2 , that is,
there exist intervals t1, t2, and t3 such that t1 < t2 < t3 and
xj2,t1 , xj1,t2 , and xj2,t3 are all positive (i.e. situation 212).
We define ε = min{xj1,t2 , xj2,t3}.

In Fig. 3 an example of the situation 212 is depicted
where without loss of generality we assumed ε = xj2,t3 . Job
Jj1 is nested in job Jj2 , and job Jj2 is nested in job Jj1 .

566 J Sched (2010) 13: 561–576

Fig. 3 Example of rearranging ε between two nested jobs.

Since both jobs are tardy, the exchange of ε between xj1,t2

and xj2,t3 causes a change in the cost of Δ, where we have:

Δ = ε(wj2 t2 + wj1 t3 − wj1 t2 − wj2 t3)

= ε
(
wj2(t2 − t3) + wj1(t3 − t2)

)

= ε
(
(t3 − t2)(wj1 − wj2)

)

≤ 0.

In the resulting situation job Jj2 is still nested in job Jj1 , but
job Jj1 is not nested in job Jj2 anymore. The exchange does
not violate any constraint as the amount of total allocation
at each interval is unaltered, and only its division between
the two jobs has been changed. Furthermore, the value of
the objective function will not increase by this exchange. In
case a strict order exists it can be seen that Δ < 0, which
contradicts the optimality of the double-nested solution.

If there is no strict order on the weight of the jobs, then
we may have that Δ = 0 for each of these interchanges.
Hence, there can exist an optimal schedule that is double
nested, but we can convert it into a nested schedule with
equal cost by repeatedly moving parts of jobs with equal
weight, like we did above. �

We have now shown that for the problem 1|rj ,pj =
p|∑wjCj a double-nested solution is either optimal (but
can be rewritten into a nested solution with equal cost in
polynomial time) or sub-optimal. Now we can make use of
Lemma 1 to show that this problem can be solved in poly-
nomial time since the constraint matrix for the non-zero
columns is totally unimodular. If the LP-solver returns a
double-nested solution, then we first convert it into a nested
solution as described in the proof of Lemma 2 and, if this
nested solution is fractional, then we apply the Selection Al-
gorithm of Sect. 3 to find a feasible schedule with equal cost.
If the Selection Algorithm fails, then we can apply the per-
turbation technique by Verma and Dessouky.

Solving an LP with n′ variables takes O(
√

n′logn′
ε
) it-

erations of each O(n′3) calculation steps (Roos 2005). In
our case with n jobs, the number of variables we have is
O(n3), which means that the total running time for the LP

is O(n10√n log n3

ε
). Although in the worst-case this is more

than the previous known result of Baptiste (2000) with dy-
namic programming, on average it might be a lot quicker.

4.2 Common due date (dj = D > p)

Now we have the situation that there exists a common due
date for all jobs that is bigger than the first possible comple-
tion time of any job. Hence, one or more jobs can be placed
before the common due date while others will become tardy.

Lemma 3 A double-nested solution is either sub-optimal,
or it can be rewritten into a nested solution with equal cost.

Proof Assume that we have an optimal solution that is dou-
ble nested. Therefore, there are two jobs Jj1 and Jj2 that are
nested in each other; without loss of generality, we assume
that j1 < j2. We address the situation that Jj1 is nested in
Jj2 . Then there exist time intervals t1, t2, and t3 such that
t1 < t2 < t3 and xj2,t1 , xj1,t2 , and xj2,t3 are positive.

Now there are two distinctions to be made:

– D ≥ t3. In this case the order of the jobs Jj1 and Jj2 does
not matter because they are both on time. Hence it is pos-
sible to switch parts of the jobs around in such a way that
we end up with a nested solution of equal cost.

– D < t3. If the weights of the two jobs are equal, we can
exchange parts between intervals t2 and t3 at no cost to
convert the current double-nested solution into a nested
solution. Otherwise we use the same approach as in the
proof of Lemma 2, and we define ε = min(xj1,t2, xj2,t3).

The optimal way of allocating ε of job Jj2 and ε of
job Jj1 among the two intervals is to first allocate ε of job
Jj2 to interval t2 and then allocate ε of job Jj1 to inter-
val t3. The idea behind this can be seen again in Fig. 3.
If there exists a strict order on the weights of the jobs,
the resulting solution after the exchange will have smaller
cost. This implies that we can improve or rewrite the
double-nested solution without violating any constraints
as the amount of total allocation at each interval in unal-
tered, and only its division between the two jobs has been
changed. Furthermore, no job is moved to an interval that
is before any interval it was previously allocated to, and
hence each release date is satisfied.

This process might have to be repeated if more occurrences
exist of double-nested situations for these two jobs.

We see that either the double-nested solution is not opti-
mal, which contradicts our assumption, or it can be rewritten
into a nested solution of equal cost. �

For the case of equal due dates D with any value for D

we present the following theorem:

Theorem 2 The problem 1|rj ,pj = p,dj = D|∑wjTj

can be solved in polynomial time.

Proof By combining Lemmas 2 and 3 we know that for any
value of D there exists an optimal schedule that is nested.

J Sched (2010) 13: 561–576 567

We can then apply the Selection Algorithm to try to convert
this nested, fractional solution to an integral solution with
equal cost; if this is unsuccessful, then we apply the pertur-
bation technique by Verma and Dessouky (1998). �

5 Arbitrary due dates

Now we look at the situation where all jobs can have dif-
ferent due dates. In this case we cannot provide a polyno-
mial algorithm for solving the problem, but we give a good
branching rule that makes use of the structure of the prob-
lem.

Unlike the common due date case, with arbitrary due
dates a fractional solution of the LP-relaxation can have a
better value than the optimal integer solution. An example
that shows this is Table 1.

The optimal LP solution with cost 3 is shown in Fig. 4.
The possible integral solutions are:

– start with job J1. After that process job J3 and job J4 and
finally process job J2, which will be tardy. This solution
has cost 5.

– start with job J2. After that one of the jobs J1, J3, and
J4 will become tardy and due to the large weight of these
jobs, the cost of this solution will be greater than 5.

– start with job J3 or J4. Since there is enough of free ca-
pacity to put job J1 in front without causing a delay, this
is dominated by the solution in which job J1 is put first.

Thus the optimal ILP solution value equals 5, which is dif-
ferent from the optimal LP solution with value 3. Further-
more we can see in Fig. 4 that the jobs J1 and J2 are double
nested.

In the following, we will analyze when it can be optimal
for two jobs Jj1 and Jj2 to be double nested; we will fur-
ther derive conditions under which we can show that such

Table 1 Common processing time p = 2

Job Release date Due date Weight

1 0 8 100

2 1 3 1

3 2 5 100

4 4 7 100

Fig. 4 Optimal LP solution that is double nested

a double-nested situation is sub-optimal. We number the
jobs such that dj1 ≤ dj2 . Anticipating our results, we remark
that in case of equal due dates a double-nested solution can
be converted into a nested solution. There are two possible
double-nested situations for the two jobs:

– Situation 1212
– Situation 2121

In both cases, we assume that the jobs have been partly as-
signed to intervals t1, t2, t3, t4 with t1 < t2 < t3 < t4.

Lemma 4 In the 1212 situation where there are two jobs Jj1

and Jj2 with dj1 ≤ dj2 , a double-nested solution is either
sub-optimal, or it can be rewritten into a nested solution
with equal cost.

Proof Assume dj2 ≥ t3. In this case job Jj2 will be on
time when completed at time t3. Exchanging ε = min{xj2,t2 ,

xj1,t3} between xj2,t2 and xj1,t3 is profitable or yields the
same cost, since:

– Job Jj2 will still be on time.
– Job Jj1 is placed earlier in time and thus its cost can only

decrease or remain the same.

Now assume dj2 < t3. In this case both jobs are tardy at
times t3 and t4. We have to make a distinction into two sep-
arate cases, based on the weight of the jobs:

– wj1 ≥ wj2 . A straightforward calculation shows that, be-
cause dj1 ≤ dj2 and wj1 ≥ wj2 , the value of the ob-
jective function will not increase when exchanging ε =
min{xj2,t2, xj1,t3} between xj2,t2 and xj1,t3 .

– wj1 < wj2 . Since both jobs are tardy when completed at
time t3, exchanging ε = min{xj1,t3 , xj2,t4} between xj1,t3

and xj2,t4 will increase the cost for job Jj1 by εwj1(t4 − t3)

and decrease the cost for job Jj2 by εwj2(t4 − t3). Since
wj1 < wj2 , the total cost decreases.

Hence, when dj1 ≤ dj2 , the situation 1212 can always be
rewritten to a nested solution of equal or less cost. �

In the case of dj1 = dj2 we can choose the situation arbi-
trarily and thus we can always see it as the 1212-situation.
This means that the case of dj1 = dj2 can always be rewrit-
ten to a nested solution of equal or smaller cost.

Lemma 5 In the 2121 situation where there are two jobs
Jj1 and Jj2 with dj1 < dj2 , a double-nested solution is ei-
ther always sub-optimal, or it can be rewritten into a nested
solution of the same cost, unless wj1 < wj2 and rj1 > rj2 .

Proof When wj1 = wj2 , we can always transform the cur-
rent solution into a new solution of equal or smaller cost by
exchanging between the intervals t3 and t4, since dj1 < dj2 .

568 J Sched (2010) 13: 561–576

Fig. 5 Example of situation where rewriting is not profitable

We now have to check the cases where the weights of the
jobs are not equal.

Assume wj1 > wj2 . Now there are two options:

– dj2 ≥ t2. Because wj1 > wj2 and dj1 < dj2 it will be prof-
itable to exchange a bit of the last two parts of the jobs:
xj2,t3 and xj1,t4 . This exchange will never cause an in-
crease in cost.

– dj2 < t2. In this case both jobs are tardy at times t3 and
t4. Because wj1 > wj2 it will always be profitable to ex-
change between xj2,t3 and xj1,t4 .

Now assume wj1 < wj2 . Again there are two options:

– dj2 < t2. In this case both jobs are tardy at times t2, t3,
and t4. It will always be profitable to exchange xj1,t2 and
xj2,t3 , because you want the job with the larger weight
(Jj2 in this case) more to the front.

– dj2 ≥ t2. In this case job Jj2 will be on time at time t2.
Generally speaking we would like to exchange xj2,t1 and
xj1,t2 because job Jj2 is still on time at time t2 and job Jj1

is put earlier which is always at least as profitable. This is
only guaranteed to be possible when rj1 ≤ t1 − p holds.
This condition holds for sure when rj1 ≤ rj2 .

The only case when the situation 2121 cannot always be im-
proved or changed for free into a nested solution is when
dj1 < dj2 , wj1 < wj2 and rj1 > rj2 . An example of such a sit-
uation is depicted in Fig. 5. If wj2 is greater than or equal to
(t4−t3)wj1
(t4−dj2)

, then an exchange between the two intervals will

not be profitable. �

Theorem 3 When there are no two jobs Jj1 and Jj2 with
rj1 > rj2 , dj1 < dj2 and wj1 < wj2 , then the problem
1|rj ,pj = p|∑wjTj can be solved in polynomial time.

Proof When no pair of jobs exist for which the condition
holds, whereas solving the LP-relaxation yields a double-
nested solution, then we can convert it into a non-double-
nested solution by combining Lemmas 4 and 5. We can then
apply the Selection Algorithm to try to convert this nested,
fractional solution to an integral solution with equal cost; if
the Selection Algorithm fails, then we apply the perturbation
technique by Verma and Dessouky (1998). �

The theorem encompasses two special cases, which are
known to be solvable in polynomial time: Baptiste (2000)

presents a polynomial time algorithm for the 1|rj ,pj =
p|∑Tj problem, and it can easily be seen that the 1|pj =
p|∑wjTj problem can be solved as an assignment prob-
lem.

5.1 Branching rule

First we define a pair of two jobs Jj1 and Jj2 to be com-
plicating jobs if their weights, due dates, and release dates
satisfy the following condition:

dj1 < dj2, wj1 < wj2, and rj1 > rj2 .

Suppose that we have found a fractional optimal solution. If
it contains two complicating jobs Jj1 and Jj2 that are dou-
ble nested, and in which at least one of the jobs has a tardy
assignment, then we will branch. In all other cases, we first
convert it to a non-double nested solution, which we then
try to convert into an integral one with equal cost by apply-
ing the Selection Algorithm, and if necessary, through the
perturbation technique by Verma and Dessouky (1998).

We branch by creating two sub-nodes from the current
node by dividing the execution interval of job Jj2 into two
parts:

– A node where job Jj2 has deadline rj1 + p − 1.
– A node where job Jj2 has release date rj1 .

This means that job Jj2 will either start before the release
date of job Jj1 or it will start at or after it. In the first case
we ensure that the two jobs cannot be processed in the same
time interval, whereas in the second case we create a new
version of the problem where the release dates of the two
jobs have become equal and thus in this new version these
two jobs are not complicating jobs anymore. Note that a
deadline for job Jj can be incorporated by putting xjt = 0
for all intervals that end after the deadline; this addition does
not influence the results by Verma and Dessouky (1998).

Usually, there are several possibilities for selecting the
pair of complicating jobs to branch on. We select to branch
on the pair of complicating jobs that span the largest number
of jobs, which is defined as the number of (partial) assign-
ments to intervals that lie between the first completion inter-
val and the last completion interval of the two complicating
jobs. The larger this number, the more jobs are influenced
by branching on this complicating pair of jobs.

6 Related objective functions

We have also looked at other objective functions besides to-
tal weighted tardiness, and we have found that the same ap-
proach based on the one by Verma and Dessouky (1998) can
also be used for the objective functions:

J Sched (2010) 13: 561–576 569

– Total weighted number of late jobs
– Total weighted late work

We will discuss both of them in more detail now.
When we look at the weighted number of late jobs

problem (1|rj ,pj = p|∑wjUj in the three-field notation
scheme), the cost of assigning job Jj to time t is:

cj,t =
{

wj if t > dj ,

0 otherwise.

Our approach is again that we solve the LP-relaxation and,
if fractional, try to convert the solution into a non-double-
nested one with equal cost from which we then derive an
optimal integral solution. Unfortunately, a solution in which
Jj1 and Jj2 are nested in each other can be better than a
non-double-nested solution in case dj1 < dj2 and rj1 > rj2 ,
and we have to branch then. Baptiste (1999) presents a dy-
namic programming algorithm that solves this problem in
polynomial time (O(n7)). Although according to the worst-
case running time our algorithm might not perform as well,
on average it could be very competitive since in case of
dynamic programming the average and worst-case running
times are equal.

We apply the same analysis as in Sect. 5 to remove double
nestings, if possible. Suppose that the jobs Jj1 and Jj2 are
double nested. The proofs for Lemmas 4 and 5 also hold for
this objective function with the following two changes:

– In some of the cases there is not a strict decrease in cost
by exchanging between two intervals, but the resulting
schedule after the exchange will have equal cost. This is
due to the binary character of this objective function.

– The case where wj1 ≥ wj2 cannot always be rewritten in
the 2121 situation. The reason for this is again the bi-
nary character of the objective function. In case of total
weighted tardiness an exchange between two tardy inter-
vals never increases the objective function, since dj1 is
strictly smaller than dj2 . In case of weighted number of
late jobs it is not guaranteed that this exchange does not
increase the objective function. An example of a situation
where the objective function increases is the same as the
one depicted in Fig. 5 in Sect. 5. An exchange between
the last two intervals will increase the cost because job
Jj1 will still be tardy and job Jj2 will become tardy af-
ter the exchange. An exchange between the middle two
intervals will also increase the cost since job Jj1 will be-
come tardy while job Jj2 will still be on time after the
exchange.

We see that regardless of the weights, the 2121 situation can-
not always be rewritten. Therefore, we have to redefine the
definition of complicating jobs for this objective function as
follows. A pair of two jobs Jj1 and Jj2 are complicating jobs

if their due dates and release dates satisfy the following con-
dition:

dj1 < dj2 and rj1 > rj2 .

We need to extend the branching rule a little. From our
experiments we saw that some instances took very long to
solve. Looking at the branching information we saw that this
was caused by jobs with a small time interval for being on
time (i.e. a job Jj with dj −rj < 2p). If such a job Jj existed
and was partially assigned to an on-time interval and a tardy
interval, then job Jj would be always selected for possible
branching with another job Jj ′ , where Jj and Jj ′ are a pair
of complicating jobs. To try and prevent such unnecessary
branching, we changed the branching rule in the following
way: In a node we first check whether there exists a job Jj

with dj − rj < 2p and both tardy and non-tardy completion
times. If such a job exists, we create two child nodes from
the current node:

– A child node where job Jj will be on time (dj is turned
into a deadline);

– A child node where job Jj will be tardy (the release date
is increased to dj − p + 1).

If such a job does not exist, we go on with the earlier sug-
gested branching rule.

When we look at the weighted total late work problem
1|rj ,pj = p|∑wjVj , the cost for assigning a job Jj to
time t is:

cj,t =
{

wjpj if t ≥ dj + p,

wj max(0, t − dj) otherwise.

Since this objective in its most extreme form (when Cj >

dj + p for a job Jj) behaves similarly to the weighted num-
ber of late jobs (cost will not increase anymore by placing
job Jj even later), we find that also for this objective func-
tion we cannot guarantee that the 2121 situation can always
be rewritten into a nested solution of equal or smaller cost;
the counterexample is the same as the one given for the sum
of weighted late jobs, depicted in Fig. 5. This means that also
for this objective function we have to redefine the definition
of complicating jobs in the same way as for the weighted
number of late jobs.

For both of these objective functions the case where the
release dates and the due dates are equally ordered means
that no complicating jobs can exist, which means that the
solution to the LP-relaxation will either be already integral,
or the fractional solution can be converted to an integral so-
lution of same cost. This means that the cases where such an
equal ordering exists are polynomially solvable.

570 J Sched (2010) 13: 561–576

7 Parallel identical machines

A nice advantage of the time-indexed formulation is that it
can be used to solve problems with m parallel, identical ma-
chines as well. In this machine environment, there are m ma-
chines available, and processing job Jj can be done by any
one of these machines, which takes an uninterrupted period
of length pj = p independent of the machine that executes
it. We can formulate the problem as an ILP problem by us-
ing assignment variables xj,t , which model our decision of
executing job Jj in period t . The only difference with the
single-machine variant is that we now can process m jobs at
the same time, which we can model by adjusting the right-
hand side in constraint (2) from 1 to m. This leads to the
following ILP-formulation:

min z =
n∑

j=1

∑

t∈Aj

cj,t xj,t

subject to

∑

t∈Aj

xj,t = 1 for all j ∈ N , (4)

n∑

j=1

∑

t ′∈Ht∩Aj

xj,t ′ ≤ m for all t ∈ K ∪ G, (5)

xj,t ∈ {0,1} for all j ∈ N , t ∈ Aj . (6)

It is readily verified that any integral solution can be con-
verted into a feasible schedule by greedily assigning job Jj

to any machine that is available in the period t for which
xj,t = 1.

Since the constraint matrix has not been changed,
Lemma 1 still holds. Hence, we come to the following corol-
lary.

Corollary 1 If any double-nested solution to the LP-
relaxation is either sub-optimal or can be rewritten to a
nested solution with equal cost, then there exists an optimal
solution to the LP-relaxation that is integral.

Since the proofs that we have given in the Sects. 4, 5,
and 6 to show how to modify double-nested solutions do
not depend on the number of machines involved, it follows
that all our previous results concerning double-nested so-
lutions still hold. Therefore, the only thing left to do is
to find the integral optimal solution in case that solving
the LP-relaxation yields a fractional one. Unfortunately, the
heuristic presented in Sect. 3 for the single-machine case
to convert a nested, fractional solution into an integral so-
lution with equal cost could not be generalized to the m-
machine case. Therefore, we immediately apply the pertur-
bation method presented by Verma and Dessouky (1998).

8 Column generation

A big disadvantage of our time-indexed formulation is that it
uses huge amounts of memory. For the biggest of the prob-
lems we tested memory usage was in the order of about 1.7
Gigabyte. To see if it was possible to reduce the amount of
memory needed for solving the problems we looked at col-
umn generation.

The idea here is to split up the time horizon into B time
frames. These time frames do not necessarily need to have
the same length but must have a length ≥ p −1. This idea of
dividing the complete time horizon has been independently
suggested by Bigras et al. (2005) for solving the 1 ‖ wjTj

problem by means of column generation. All time frames
combined should cover the complete time horizon com-
pletely, and consecutive time frames may overlap at most
p − 1 time units. Each time frame b (b = 1, . . . ,B) has
a start time μb and end time ωb . Without loss of general-
ity we created the time frames in such a way that two con-
secutive time frames have an overlap of exactly p − 1 (i.e.
μb+1 + p − 1 = ωb).

Given a division of the time horizon into a set of time
frames, we compute for each time frame a feasible schedule
for a subset of the jobs, such that each job is executed in ex-
actly one time frame. We formulate this problem as an ILP
using the concept of time-frame plans. A time-frame plan
for a given time frame consists of the completion times for
a subset of the jobs. The completion times must be feasi-
ble within the time frame, meaning that the jobs can actu-
ally be completed at their respective completion times, and
all completion times must lie within the boundaries of the
time frame. Now we need to find a suitable time-frame plan
for each of the time frames. We need to make sure that all
jobs are processed in exactly one of the selected time-frame
plans. Furthermore, we also have to make sure that the total
idle time in the overlapping part of two consecutive time-
frame plans is greater than or equal to p − 1, ensuring that
we do not violate the capacity constraint in the overlapping
part.

Let s denote the number of possible time-frame plans.
For each time-frame plan i we determine the indicators yji

and qbi , which are defined as

yji =
{

1 if job Jj is processed in time-frame plan i,

0 otherwise,

qbi =
{

1 if time-frame plan i is for time-frame b,

0 otherwise.

We denote the cost of time-frame plan i by ci , and we use
yi and zi to denote the amount of idle time in the front and
end overlap of the time frame. We introduce the binary vari-
able xi to indicate whether or not we include time-frame

J Sched (2010) 13: 561–576 571

plan i in our solution. Now the complete ILP model is as
follows:

min
s∑

i=1

cixi

subject to

s∑

i=1

yjixi = 1, j = 1 . . . n, (7)

s∑

i=1

qbixi = 1, b = 1 . . .B, (8)

s∑

i=1

ziqbixi +
s∑

i=1

yiqb+1,ixi ≥ p − 1, b = 1 . . .B − 1,

(9)

xi ∈ {0,1} ∀i. (10)

Constraint (7) ensures that all jobs will be present in exactly
one selected time-frame plan and constraint (8) ensures that
for each time-frame exactly one time-frame plan will be se-
lected. Finally constraint (9) ensures that the idle time in the
overlap between two consecutive time-frame plans is at least
p − 1.

To approximate the optimum of this integral model, we
first relax the integrality constraint (10) to xi ≥ 0 (the
other constraints ensure xi ≤ 1). We solve the resulting LP-
relaxation through column generation.

In each iteration we only allow a subset of the time-frame
plans and solve the LP-relaxation for this restricted set of
variables. We then solve the corresponding pricing prob-
lem to find out whether there are time-frame plans the ad-
dition of which will reduce the objective function. The pric-
ing problem is defined as finding the feasible time-frame
plan with minimum reduced cost; if this minimum is non-
negative, then we have solved the LP-relaxation to optimal-
ity. To compute the reduced cost we need the dual multipli-
ers.

For each type of constraint in the master problem we get
a dual multiplier:

– From (7) we get a dual multiplier πj for each job Jj .
– From (8) we get a dual multiplier τb .
– From (9) we get a dual multiplier φb for each overlap be-

tween time frame b and b + 1.

We solve the pricing problem for each time frame individ-
ually. It can be solved in a similar fashion as the original
problem: for a given time frame we define the set of possi-
ble completion times and then assign these to eligible jobs
such that the capacity constraints are satisfied. The changes

that have to be made for solving the pricing problem for a
given time frame b are:

– We can discard any completion time < μb + p or > ωb

and create the following sets:
• Ab

j = {a ∈ Aj |μb + p ≤ a ≤ ωb} (j = 1, . . . , n) denot-
ing the possible completion times of job Jj within time
frame b.

• Hb
t = {h ∈ Ht |μb ≤ h ≤ ωb + p} ∀t denoting the time

indices within time frame b that are conflicting with
time t .

• Gb = {g ∈ G|μb ≤ g ≤ ωb + p} denoting all first pos-
sible completion times of all jobs within time frame b.

• Kb = {k ∈ K|μb ≤ k ≤ ωb +p} denoting all other pos-
sible completion times of all jobs that are within time
frame b.

– We are interested in jobs that are processed in the time
frame b. Possibly not all jobs can be processed, so we
relax the constraint ‘all jobs must be processed exactly
once’ to ‘all jobs must be processed at most once’.

– Since we need to know something about the available idle
time in the overlapping regions, we add two extra jobs αb

and βb , both with processing time p, for the front over-
lap and the end overlap of a time frame respectively. The
possible completion times for these two extra jobs are:
• Ab

α : {μb,μb + 1, . . . ,μb + p − 1}.
• Ab

β : {ωb + 1,ωb + 2, . . . ,ωb + p}.
It can be seen that these jobs have a special status, since
job α starts before the start time of the time frame and job
β ends after the end time of the time frame. For the first
time frame job α does not exist and for the last frame job
β does not exist because there is no time frame to overlap
with.

Solving the pricing problem should result in a time-frame
plan with minimum reduced cost. Hence, we need to set the
cost of job Jj being completed at time t such that it corre-
sponds exactly to its contribution to the reduced cost. If a job
Jj is not assigned in this time frame, it does not contribute
to the cost function; otherwise, the cost cj,t of assigning job
Jj to time t is defined as follows:

cj,t = wj max{0, t − dj } − πj .

Furthermore the cost for assigning the αb and βb jobs to a
time t are as follows:

cαb,t = (t − μb)φb+1,

cβb,t = (ωb + p − t)φb,

which corresponds to the amount of idle time at the front or
the back of the time frame multiplied by the corresponding
dual multiplier.

572 J Sched (2010) 13: 561–576

The pricing problem we need to solve for a certain time
frame b is as follows:

min
n∑

j=1

∑

t∈Ab
j

cj,t xj,t − τb −
∑

t∈Ab
β

cβb,t xβb,t −
∑

t∈Ab
α

cαb,t xαb,t

subject to

∑

t∈Ab
j

xj,t ≤ 1 for all j ∈ N , (11)

∑

t∈Ab
α

xαb,t = 1, (12)

∑

t∈Ab
β

xβb,t = 1, (13)

n∑

j=1

∑

t ′∈Hb
t ∩Ab

j

xj,t ′ +
∑

t ′∈Hb
t ∩Ab

α

xαb,t
′ +

∑

t ′∈Hb
t ∩Ab

β

xβb,t
′ ≤ 1

for all t ∈ Kb ∪ Gb, (14)

xj,t ∈ {0,1}, for j ∈ N ∪ {α,β}, t ∈ Ab
j . (15)

Constraint (11) ensures that all regular jobs are processed
at most once and constraint (12) and constraint (13) ensures
that the alpha and beta job are processed exactly once. Fi-
nally constraint (14) ensures that there does not exist a time
where more than one job is processed.

When the pricing problem is solved we know which jobs
are assigned to which time intervals and we can calculate
the cost ci of the new variable xi in the master problem as
follows

n∑

j=1

∑

t∈Ab
j

cj,t xj,t .

Furthermore the two indicators yi and zi denoting the idle
time in the front overlap region and the rear overlap region
can be set according to the assignment of the α and β job.

For creating the initial variables for the master problem
we ordered the jobs on their release dates and assigned them
to the earliest possible time interval. From this integral fea-
sible schedule we determined which jobs were processed
in which time intervals and from this we created the ini-
tial variables. When the LP-relaxation is solved to optimal-
ity with the column generation, we add the integrality con-
straint back again to the master problem and then try to
solve the master problem again with the generated set of
columns.

Initial tests with a prototype implementation showed that
the solutions given by solving the LP-relaxation with col-
umn generation often had a fractional solution value lower

than the integral solution we found with our initial repre-
sentation. As expected, the total amount of memory needed
for solving the problems was a lot less because only a small
part of the total number of variables was created in memory.
One major disadvantage the tests showed was that the run-
ning time for solving the LP-relaxation to optimality grew
considerably. However, since the problem is divided into
a set of smaller, independent, subproblems, we can easily
parallelize the solving of the subproblems. Since this LP-
relaxation gave a lot weaker lower bound, one approach to
solve the ILP problem to optimality would be to make use
of branch-and-price. We did not implement this.

9 Computational experiments

For testing the time-indexed formulation, the branching rule,
and the Selection Algorithm a program was written in Java.
All tests were run on a Pentium 4 running at 3.00 GHz with
1 GB of RAM. For solving the ILPs we used Cplex 9.1
(ILOG 2005). We wanted to create some problems varying
in size and did this by choosing the number of jobs n from
the set {70,80,90,100} and the common processing time p

from the set {5,10,15,20,25,30}. For each combination of
these two parameters we created 50 instances in the follow-
ing way:

– rj was randomly selected from the interval [0, (n − 6)p).
– wj was randomly selected from the interval [0,120).
– dj was randomly selected from the interval [rj + p,

(n − 5)p).

This resulted in a total of 1200 instances. Each of these in-
stances was then solved for the three objective functions sum
of weighted tardiness, sum of weighted late jobs, and sum of
weighted late work.

The results of the tests for the weighted tardiness problem
can be found in Table 2. The first two columns denote the
number of jobs and the common processing time. The next
two columns give the average time in milliseconds needed
for solving the instances by using pure Cplex without any
extra information in the first column and by using Cplex en-
hanced with the branching rule and Selection Algorithm in
the second. The following two give the average number of
nodes that needed to be explored before the optimum was
found. The next two give the average number of iterations
needed before the problem was solved to optimality. The fi-
nal column gives the average integrality gap for the set of
instances.

One thing that can be clearly seen from the table is that
the average integrality gap is very little to completely non-
existent, denoting that the relaxed time-indexed formulation
gives a really strong bound for the solution. This can also be
seen by looking at the average number of nodes that needed
to be explored before the optimum was found.

J Sched (2010) 13: 561–576 573

Table 2 Results weighted tardiness

Jobs P Average time for solving (ms) Average number of nodes Average number of iterations Average
integrality
gap (‰)Cplex B.R. Cplex B.R. Cplex B.R.

70 5 1891.60 1573.10 0.12 0.00 985.08 944.72 0.8

70 10 4780.08 4036.70 0.00 0.00 1721.20 1641.18 =
70 15 10220.30 6946.68 0.14 0.00 2021.24 1853.60 0.0

70 20 14435.70 10444.10 0.16 0.00 2364.98 2213.54 =
70 25 19684.76 15678.44 0.22 0.04 2721.16 2562.24 0.1

70 30 27206.66 17545.42 0.82 0.04 2897.80 2584.78 0.2

80 5 2840.56 2264.26 0.48 0.00 1334.74 1251.34 0.2

80 10 7877.82 5957.82 0.00 0.00 2002.34 1876.98 0.0

80 15 14807.52 10731.10 0.10 0.00 2454.92 2304.52 0.2

80 20 27111.76 16999.60 0.30 0.00 3043.64 2756.76 0.0

80 25 36674.16 20459.46 0.48 0.00 3236.98 2804.32 =
80 30 37105.58 25986.88 0.24 0.02 3363.52 3075.04 0.2

90 5 4144.52 2926.86 0.00 0.00 1527.34 1404.26 0.0

90 10 13632.42 9153.16 0.20 0.02 2458.74 2251.18 0.1

90 15 25802.94 15212.90 0.40 0.00 3146.56 2758.06 =
90 20 37260.04 23841.70 0.32 0.00 3578.20 3257.10 =
90 25 47910.14 31606.50 0.20 0.00 3939.44 3579.86 =
90 30 72489.82 42054.82 0.80 0.00 4322.44 3817.04 =

100 5 5153.96 4183.32 0.00 0.00 1754.06 1674.80 0.0

100 10 16928.82 12230.32 0.30 0.00 2805.62 2608.72 =
100 15 32375.18 23278.04 0.18 0.00 3566.20 3346.54 0.0

100 20 61929.32 34486.50 1.02 0.00 4463.46 3873.96 =
100 25 100738.12 50501.48 1.12 0.00 5326.60 4302.40 0.0

100 30 122807.82 75730.52 0.44 0.08 5655.16 4979.72 0.2

Cplex = Results Cplex 9.1, B.R. = Results with branching rule and Selection Algorithm = : Integrality gap was 0 for all instances

If we look at the first line (70 jobs with P = 5) in Table 2
we see that with the branching rule and Selection Algorithm
on average 0 nodes need to be explored before the optimum
is found, while there still is an integrality gap. The reason
for this is that after solving the root node, Cplex added some
cuts, after which the Selection Algorithm could convert the
new solution to an integral solution. In the majority of the
instances, after Cplex finished solving the root-node LP and
possibly added some cuts, the Selection Algorithm could
convert the found fractional solution to an integral solution
of same cost. In the cases the Selection Algorithm could not
be applied, the number of nodes that needed to be explored
to find the optimum never exceeded 4. The number of nodes
that were explored when only Cplex was used was at most
30 and for all instances this number was always greater than
or equal to the number of nodes needed with the branching
rule and Selection Algorithm.

The results for the objective functions weighted late jobs
and weighted late work can be found in Tables 3 and 4 re-
spectively.

If we look at these two tables then we see that for
some of the problems, Cplex on average needs to explore
fewer nodes before the optimum is found than our branch-
and-bound algorithm. In all cases this increased average is
caused by a single instance for which our branching rule
branches on an unfortunate set of variables. This causes a lot
of nodes to be explored before the optimum can be found.

Another observation is that for the number of weighted
late jobs problem, for two of the sets of larger instances there
exist instances that Cplex could not solve. Initially these in-
stances were not solvable with the original branching rule
either; only after changing the branching rule as mentioned
in Sect. 6 these instances could be solved.

The implementation was not optimized for speed and
some improvements are still possible. These changes would

574 J Sched (2010) 13: 561–576

Table 3 Results weighted late jobs

Jobs P Average time for solving (ms) Average number of nodes Average number of iterations Average
integrality
gap (‰)Cplex B.R. Cplex B.R. Cplex B.R.

70 5 2173.76 1614.40 0.28 0.00 925.26 824.52 19.0

70 10 6336.38 4704.88 0.22 0.04 1584.54 1410.76 5.2

70 15 15812.24 9536.66 24.12 0.18 1852.96 1590.34 11.9

70 20 19019.84 14309.14 2.08 4.06 2177.22 2005.26 7.1

70 25 32457.72 20199.04 33.20 0.14 2592.64 2149.72 18.1

70 30 32067.36 21591.08 0.50 0.10 2335.52 2082.78 4.0

80 5 4115.68 2787.94 17.38 0.14 1251.30 1098.20 14.1

80 10 11372.56 6780.58 14.86 0.04 1903.24 1623.14 1.3

80 15 19108.02 11399.24 0.36 0.00 2292.64 1943.30 0.8

80 20 39983.62 21466.40 23.50 0.34 2880.24 2369.90 23.1

80 25 57937.80 38194.18 2.58 0.36 3281.24 2534.72 13.1

80 30 56392.76 45024.90 2.48 15.24 3182.84 3000.28 4.7

90 5 5204.18 3042.52 0.56 0.00 1436.70 1226.82 11.6

90 10 18414.40 9015.18 1.04 0.00 2364.08 1901.80 3.5

90 15 45076.90 21474.64 19.16 0.12 3167.76 2452.88 17.0

90 20 55830.74 29861.64 0.94 0.18 3482.40 2812.38 12.9

90 25 96773.20 44125.78 40.16 0.14 4263.70 3109.56 0.9
∗90 30 210834.68 74404.14 365.88 0.60 6117.14 3750.76 23.2

100 5 6671.16 4945.88 1.38 0.10 1683.70 1495.80 9.0

100 10 36198.62 18203.18 48.52 0.20 3201.30 2416.08 10.9

100 15 53255.30 26856.22 1.64 0.04 3546.68 2911.34 7.3

100 20 125703.80 44362.66 3.72 0.24 4959.40 3313.70 13.9

100 25 189431.78 78217.88 356.50 0.84 7652.92 4092.86 4.2
∗100 30 374531.18 173092.26 326.68 1.04 11306.32 5049.76 21.4

Cplex = Results Cplex 9.1, B.R. = Results with branching rule and Selection Algorithm, ∗Cplex could not solve one or more instances

not improve the number of nodes or number of iterations
for any of the problems, but would only decrease the time
needed for solving the problems. The more nodes that need
to be explored, the bigger the decrease in time would be.

Another observation that was made during the tests, is
that the memory needed by pure Cplex was on average con-
siderably more compared to the memory consumption of
Cplex combined with our branching rule. This can be ex-
plained by the fact that Cplex branches on single variables,
while our branching rule branches on a set of variables and
thus the branching depth stays lower.

10 Conclusion and further research

Our basis problem is the 1|rj ,pj = p|∑wjTj problem.
We have presented a time-indexed ILP-formulation for this

problem and show that if the instance does not contain two
jobs Ji and Jj such that di < dj and wi < wj and wi < wj

then the LP-relaxation can be converted into an optimal so-
lution. For the general case we present an efficient branch-
and-bound algorithm.

Next, we showed that the same approach could be
used for the single-machine problems of minimizing total
weighted late work and total weighted late jobs, respec-
tively. Here the LP-relaxation can be converted into an op-
timal solution in case the release dates and due dates are
equally ordered.

We further showed that the results obtained for the single-
machine problems can directly be translated to the corre-
sponding problems with m identical, parallel machines, ex-
cept for that we could not generalize the single-machine Se-
lection Algorithm to the m-machine situation. This can be
circumvented by using small perturbations in the cost func-
tion.

J Sched (2010) 13: 561–576 575

Table 4 Results weighted late work

Jobs P Average time for solving (ms) Average number of nodes Average number of iterations Average
integrality
gap (‰)Cplex B.R. Cplex B.R. Cplex B.R.

70 5 2080.66 1489.94 0.00 0.00 901.72 816.60 0.9

70 10 5456.00 3844.50 0.00 0.00 1534.30 1380.56 1.3

70 15 12834.56 7676.14 10.92 0.04 1868.04 1636.96 1.0

70 20 16126.78 10842.42 0.12 0.40 2077.12 1876.96 0.4

70 25 30571.46 19438.82 21.00 0.22 2511.44 2217.86 3.1

70 30 28914.50 18249.92 2.86 0.24 2495.60 2169.92 3.7

80 5 3395.70 2322.50 0.54 0.08 1237.94 1081.62 0.9

80 10 10167.48 6547.82 0.36 0.02 1971.60 1695.80 1.2

80 15 16948.26 11093.56 0.24 0.06 2254.70 2026.52 0.2

80 20 27690.58 17443.74 0.28 0.08 2679.92 2351.72 0.8

80 25 73342.68 31503.12 60.88 0.24 3513.04 2628.76 3.3

80 30 59537.10 26996.18 45.68 0.22 3220.96 2599.38 0.7

90 5 5406.16 2836.42 1.26 0.00 1463.48 1228.06 0.2

90 10 17117.94 10031.40 1.06 0.34 2462.54 2007.40 1.1

90 15 31236.90 15361.46 0.72 0.00 2821.76 2371.84 0.2

90 20 55840.70 24638.02 0.80 0.00 3455.44 2759.28 0.0

90 25 74709.72 34966.28 12.50 0.28 3983.92 3074.80 1.2

90 30 100073.20 48197.24 1.28 0.06 4391.50 3459.70 1.0

100 5 5781.44 4375.96 0.68 0.06 1617.74 1468.30 4.4

100 10 29789.30 13383.64 5.40 0.06 3111.58 2428.16 4.2

100 15 46590.86 32824.52 1.30 1.50 3574.30 3086.56 1.4

100 20 95535.26 36192.38 1.96 0.08 4732.06 3283.82 2.3

100 25 184365.38 67680.54 3.98 0.42 6221.94 4079.94 0.9

100 30 181203.72 84013.28 3.24 0.48 5599.68 4349.68 2.8

Cplex = Results Cplex 9.1, B.R. = Results with branching rule and Selection Algorithm

Finally, we have shown that the technique of column gen-
eration can be used to solve this kind of problems in case of
a lack of memory to perform the standard ILP algorithm.

There are three clear open questions. The first one is
to establish the computational complexity of 1|rj ,pj =
p|∑wjTj ? Although we have given a good characteriza-
tion of the problem, it is still an open question whether
the general 1|rj ,pj = p|∑wjTj problem is polynomially
solvable. The second question is to devise a fast, exact algo-
rithm to convert a fractional, nested solution to an integral
solution. The third question is to determine a heuristic or
exact algorithm to convert a fractional, nested solution to an
integral solution for the m-machine case.

Acknowledgements The authors want to express their gratitude to
Chams Lahlou. As a referee, he gave very useful comments on an ear-
lier draft of the paper in which he showed by example (which example

we copied in Fig. 2) that the Selection Algorithm is just a heuristic.
The research of the second author was conducted when he was a Ph.D.-
student at Utrecht University.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Akturk, M. S., & Ozdemir, D. (2001). A new dominance rule to min-
imize total weighted tardiness with unequal release dates. Euro-
pean Journal of Operational Research, 135, 394–412.

Baptiste, P. (1999). Polynomial time algorithms for minimizing the
weighted number of late jobs on a single machine with equal
processing times. Journal of Scheduling, 2, 245–252.

Baptiste, P. (2000). Scheduling equal-length jobs on identical parallel
machines. Discrete Applied Mathematics, 103(1–3), 21–32.

576 J Sched (2010) 13: 561–576

Baptiste, P., Brucker, P., Knust, S., & Timkovsky, V. (2004). Ten notes
on equal-processing-time scheduling. 4OR: Quarterly Journal of
the Belgian, French and Italian Operations Research Societies, 2,
111–127.

Bigras, L.-P., Gamache, M., & Savardan, G. (2005). Time-indexed for-
mulations and the total weighted tardiness problem. Technical re-
port, GERAD and ’Ecole Polytechnique de Montréal.

Du, J., & Leung, J. Y. T. (1990). Minimizing total tardiness on one
machine is NP-hard. Mathematics of Operations Research, 15(3),
483–495.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan,
A. H. G. (1979). Optimization and approximation in deterministic
sequencing and scheduling: a survey. Annals of Discrete Mathe-
matics, 5, 287–326.

ILOG (2005). ILOG CPLEX v9.1, http://www.ilog.fr.

Lawler, E. L. (1977). A pseudopolynomial algorithm for sequencing
jobs to minimize total tardiness. Annals of Discrete Mathematics,
1, 331–342.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complex-
ity of machine scheduling problems. Annals of Discrete Mathe-
matics, 1, 343–362.

Leung, J. Y.-T. (2004). Handbook of scheduling. New York: Chapmann
& Hall/CRC.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinator-
ial optimization. Wiley-interscience series in discrete mathematics
and optimization. New York: Wiley.

Roos, C. (2005). Private communication.
Verma, S., & Dessouky, M. (1998). Single-machine scheduling of unit-

time jobs with earliness and tardiness penalties. Mathematics of
Operations Research, 23(4), 930–943.

http://www.ilog.fr

	Minimizing total weighted tardiness on a single machine with release dates and equal-length jobs
	Abstract
	Introduction
	Problem formulation
	Converting fractional non-double-nested solutions
	Common due date
	Common due date equal to zero
	Common due date (dj=D >p)

	Arbitrary due dates
	Branching rule

	Related objective functions
	Parallel identical machines
	Column generation
	Computational experiments
	Conclusion and further research
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

