332 research outputs found

    A mathematical framework for modelling axon guidance

    Get PDF
    In this paper, a simulation tool for modeling axon guidance is presented. A mathematical framework in which a wide range of models can been implemented has been developed together with efficient numerical algorithms. In our framework, models can be defined that consist of concentration fields of guidance molecules in combination with finite-dimensional state vectors. These vectors can characterize migrating growth cones, target neurons that release guidance molecules, or other cells that act as sources of membrane-bound or diffusible guidance molecules. The underlying mathematical framework is presented as well as the numerical methods to solve them. The potential applications of our simulation tool are illustrated with a number of examples, including a model of topographic mapping

    The effect of dendritic morphology on pattern recognition in the presence of active conductances

    Get PDF
    © 2011 de Sousa et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Poster presented at CNS 2011Peer reviewe

    Characterisation of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptidyl aminopeptidase

    Get PDF
    We have cloned the Aspergillus niger dapB gene. Analysis of its nucleotide sequence and the corresponding protein sequence indicates that the gene encodes a type IV dipeptidyl aminopeptidase (DPP IV). Based upon its deduced sequence we predict the presence of a transmembrane domain in the protein. Furthermore, dapB-overexpressing transformants display an increase in intracellular DPP IV activity. This is the first reported characterisation of a dipeptidyl aminopeptidase with a transmembrane domain from a filamentous fungus. Using the dapB sequence as a query, we were able to identify 14 DPP IV-encoding genes, and 12 additional DPPIV proteases in public genomic databases. Phylogenetic analysis reveals that in yeasts there are two clades of genes that encode DPP IV proteases with a transmembrane domain. In this study we demonstrate that, as in yeasts, two classes of DPP IV-encoding genes exist in filamentous fungi. However, only one of these codes for DPP IV proteases with a transmembrane domain. The second type present in filamentous fungi encodes extracellular DPP IV proteases. The dapB gene belongs to the first cluster. We propose that DapB plays a role in the proteolytic maturation of enzymes produced by A. nige

    Mathematical modelling and numerical simulation of the morphological development of neurons

    Get PDF
    BACKGROUND: The morphological development of neurons is a very complex process involving both genetic and environmental components. Mathematical modelling and numerical simulation are valuable tools in helping us unravel particular aspects of how individual neurons grow their characteristic morphologies and eventually form appropriate networks with each other. METHODS: A variety of mathematical models that consider (1) neurite initiation (2) neurite elongation (3) axon pathfinding, and (4) neurite branching and dendritic shape formation are reviewed. The different mathematical techniques employed are also described. RESULTS: Some comparison of modelling results with experimental data is made. A critique of different modelling techniques is given, leading to a proposal for a unified modelling environment for models of neuronal development. CONCLUSION: A unified mathematical and numerical simulation framework should lead to an expansion of work on models of neuronal development, as has occurred with compartmental models of neuronal electrical activity

    Volumetric measurement of pulmonary nodules at low-dose chest CT: effect of reconstruction setting on measurement variability

    Get PDF
    To assess volumetric measurement variability in pulmonary nodules detected at low-dose chest CT with three reconstruction settings. The volume of 200 solid pulmonary nodules was measured three times using commercially available semi-automated software of low-dose chest CT data-sets reconstructed with 1 mm section thickness and a soft kernel (A), 2 mm and a soft kernel (B), and 2 mm and a sharp kernel (C), respectively. Repeatability coefficients of the three measurements within each setting were calculated by the Bland and Altman method. A three-level model was applied to test the impact of reconstruction setting on the measured volume. The repeatability coefficients were 8.9, 22.5 and 37.5% for settings A, B and C. Three-level analysis showed that settings A and C yielded a 1.29 times higher estimate of nodule volume compared with setting B (P = 0.03). The significant interaction among setting, nodule location and morphology demonstrated that the effect of the reconstruction setting was different for different types of nodules. Low-dose CT reconstructed with 1 mm section thickness and a soft kernel provided the most repeatable volume measurement. A wide, nodule-type-dependent range of agreement between volume measurements with different reconstruction settings suggests strict consistency is required for serial CT studies
    corecore