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Abstract

The hippocampus is critical for a wide range of emotional and cognitive behaviors. Here, we performed the first genome-
wide search for genes influencing hippocampal oscillations. We measured local field potentials (LFPs) using 64-channel
multi-electrode arrays in acute hippocampal slices of 29 BXD recombinant inbred mouse strains. Spontaneous activity and
carbachol-induced fast network oscillations were analyzed with spectral and cross-correlation methods and the resulting
traits were used for mapping quantitative trait loci (QTLs), i.e., regions on the genome that may influence hippocampal
function. Using genome-wide hippocampal gene expression data, we narrowed the QTLs to eight candidate genes,
including Plcb1, a phospholipase that is known to influence hippocampal oscillations. We also identified two genes coding
for calcium channels, Cacna1b and Cacna1e, which mediate presynaptic transmitter release and have not been shown to
regulate hippocampal network activity previously. Furthermore, we showed that the amplitude of the hippocampal
oscillations is genetically correlated with hippocampal volume and several measures of novel environment exploration.
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Introduction

The hippocampus is critical for a wide range of emotional and

cognitive behaviors. Changes in hippocampal oscillatory activity

have been established during hippocampus dependent behaviors,

such as anxiety-related behavior and spatial orientation [1,2,3].

Furthermore, an increase in amplitude of gamma oscillations in the

hippocampus has been associated with memory retrieval in humans

[4] and rats [5]. Together, these data suggest an important role for

gamma oscillatory activity in hippocampal function.

Oscillations can be pharmacologically induced in ventral

hippocampal slices of rodents by applying the acetylcholine

receptor agonist carbachol [6,7]. This in vitro activity, which we

will refer to as ‘‘fast network oscillations’’, shares many

characteristics with gamma oscillations in vivo [8,9]. In particular,

the amplitude of in vitro ventral hippocampal oscillations correlates

with in vivo gamma amplitude and performance in a memory task

[10]. Moreover, we recently reported differences among eight

common inbred mouse strains in traits of carbachol-induced fast

network oscillations in hippocampal slices, which implies the

contribution of genetic variation to these traits [11]. Therefore, in

vitro hippocampal activity is a physiologically relevant source of

information to identify genetic variants affecting hippocampal

function.

Here, we aimed at identifying genes that underlie variation in

hippocampal spontaneous activity and carbachol-induced oscilla-

tions in vitro, using a population of 29 BXD recombinant inbred

mouse strains [12]. The BXD strains were derived from an

intercross of the common inbred mouse strains C57BL/6J and

DBA/2J, which differ in many neurophysiologic hippocampal

traits and hippocampus-related behavioral traits. For example,

C57BL/6J outperforms DBA/2J in spatial memory tasks

[13,14,15], which has been associated with their differences in

synaptic plasticity [16], and hippocampal mossy fiber projections

[17,18,19]. The BXD strains, therefore, form an excellent resource

to identify the segregating genetic variants that affect hippocam-

pus-related traits, and they enabled us to identify quantitative trait

loci (QTLs) associated with these traits. These QTLs contained

many candidate genes and, therefore, we used gene expression

data to identify genes of which the expression is linked to

hippocampal activity. Using this approach, we identified three

genes that were linked to hippocampal activity previously and we

identified five novel candidate genes.

In addition we questioned whether genetic predisposition for

having a certain level of amplitude, frequency or coherence of

hippocampal activity affects behavior. To address this, we

computed correlations between the hippocampal activity traits

and the behavioral phenotypes assembled in the GeneNetwork
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database (www.genenetwork.org). We found that several behav-

ioral traits and hippocampal activity parameters were correlated in

the mouse strains used, indicating a shared genetic component.

Results

To identify genes that affect hippocampal activity, we measured

local field potentials (LFPs) in hippocampal slices from 29 BXD

recombinant inbred strains. Measurements were performed using 60-

channel multi-electrode arrays that covered the entire hippocampal

cross-section in the slice (Fig. 1A), and the electrodes were classified as

located in one of nine anatomical subregions (Fig. 1B). In the first

condition, slices were perfused with artificial cerebrospinal fluid

(ACSF), which gave rise to asynchronous activity characterized by 1/

f-like amplitude spectra (Fig. 1C–E). We computed the integrated

amplitudes in the frequency bands 1–4, 4–7, 7–13, 13–25, 25–35,

and 35–45 Hz. These amplitudes differed considerably across mouse

strains as illustrated with the two extreme mouse strains in Figure 2A.

Following the ACSF condition, we applied the acetylcholine

receptor agonist carbachol (25 mM) to pharmacologically induce

fast network oscillations (see Fig. 1C–E and Materials and

Methods). The amplitude of these oscillations also differed

conspicuously between strains (Fig. 2B). To selectively analyze

the effect of carbachol on hippocampal activity, we divided the

value of a trait in the carbachol condition by that obtained in the

ACSF condition and computed heritability scores and genetic

correlations.

Hippocampal activity traits exhibit prominent heritability
and genetic correlations

The analysis of amplitude, peak frequency and inter-areal

correlations (see Materials and Methods) for the two conditions in

the nine hippocampal subregions define a total of 198 trait values

per slice. Several traits were observed to exhibit prominent

variation across the mouse strains, e.g., the peak amplitude in the

presence of carbachol varied by a factor of three (Fig. 3A) in the

CA1 stratum pyramidale. P-values from F statistics (ANOVA) and

heritability scores were calculated for every trait (Tables S1 and

S2). The heritabilities ranged from 1 to 25%.

Interestingly, we observed a wide range of genetic correlations

between the 198 traits, as illustrated by the scatter plots in

Figure 1. Local field potentials were recorded in hippocampal slices with multi-electrode arrays during ACSF and during
application of carbachol. (A) The 8-by-8 multi-electrode array covering a slice of the mouse hippocampus. Black dots are electrodes and the
spacing is 200 mm. For every slice, a photograph was taken to classify the electrode location into one of the nine hippocampal subregions shown in
(B). (C) Time-frequency representation of a signal in CA3 stratum pyramidale for the complete experimental recording. (D) Examples of broadband (1–
45 Hz) local field potential (LFP) traces in the ACSF (blue) and carbachol (red) condition. (E) Amplitude spectra of representative signals in each
condition. (F) Box-plot summaries of peak frequencies of carbachol-induces oscillations, measured at different temperatures. The frequency
approaches the gamma-frequency range (.30 Hz) at physiological temperature.
doi:10.1371/journal.pone.0026586.g001

Genes Associated with Hippocampal Oscillations
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Figure 3B–D. A low genetic correlation indicates that traits are

influenced by different genes, whereas a high genetic correlation

suggests that traits have the same underlying genes.

We performed a cluster analysis to evaluate the genetic

correlation structure of the set of 198 traits (Fig. 4). The distance

measure between traits reflected genetic correlation. The number

of clusters depends on the threshold for the minimal distance

between the clusters (see Materials and Methods). A threshold of

0.45, i.e., allowing for a maximal mean correlation between

clusters of 0.55, resulted in clusters that largely correspond to six

main classes representing experimental conditions and type of

analyses (Fig. 4A–B). For the ACSF condition, one class contains

all the interregional correlations (n = 36), and one class the

amplitudes in the nine regions from all frequency bands (1–4, 4–

7, 7–13, 13–25, 25–35, 35–45 Hz, n = 54). For the carbachol

condition, the four classes contain the phase-locking factors

(n = 36), the amplitudes from all frequency bands and subregions

(n = 54), the peak frequencies (n = 9) and the peak amplitudes

(n = 9), respectively. We color-coded each of the 198 traits

according to this classification in Figure 4C, to visualize

performance of the clustering analysis in separating the six main

classes of traits. Because the traits were strongly correlated within

the six classes, for each class we calculated the mean over the strain

means (per strain) for QTL analysis. From this point onward, the

number of traits was reduced to six, and they will be referred to as:

correlation (ACSF) (GeneNetwork ID 13484), amplitude 1–45 Hz

(ACSF) (ID 13486), correlation (CCH) (ID 13491), amplitude 1–

45 Hz (CCH) (ID 13490), peak amplitude (ID 13487) and peak

frequency (ID 13488).

Amplitude of carbachol-induced oscillations shows
prominent genetic correlation with hippocampal volume
and locomotion traits

Studying hippocampal activity in BXD strains opens up the

exciting possibility to relate genetic variation in brain activity to

that of phenotypes from the GeneNetwork database, which

contains more than 2000 behavioral, anatomical and physiological

traits from previous studies on BXD strains. We computed genetic

correlations between the hippocampal activity traits and two

subsets of phenotypes from the GeneNetwork database (Materials

and Methods). See Tables S3 and S4 for descriptions of

phenotypes in the subsets.

The first subset (n = 35) consisted of physiological traits of the

hippocampus, such as the weight or volume of different subregions

of the hippocampus. Interestingly, the trait amplitude 1–45 Hz

(CCH) was negatively correlated with volume of the hippocampus.

The four phenotypes from the subset with the most significant

correlations with amplitude 1–45 Hz (CCH), were two measures

of hippocampus volume (GeneNetwork ID 10457: r = 20.68,

p,0.002 (Fig. 5A) and ID 10456: r = 20.66, p,0.002 [20]), and

two measures of ventral hippocampus volume (ID 10756:

r = 20.57, p,0.01 and ID 10757: r = 20.53, p,0.05 [21],

uncorrected p-values). The four correlations were significant at a

false discovery rate of 0.125.

The second subset (n = 351) consists of a selection of behavioral

traits from the database (see Materials and Methods). We found

strong negative correlations between peak amplitude and four

traits representing locomotion in a novel environment (ID 11510:

r = 20.62, p,0.0005 (Fig. 5B), ID 10916: r = 20.83, p,0.0005,

ID 10037: r = 20.76, p,0.001, ID 10416: r = 20.89, p,0.005,

uncorrected p-values). The four locomotion traits were strongly

correlated with each other, despite having been measured in

different studies [22,23,24,25], which reflects that locomotion is a

very reproducible trait [26]. The four locomotion traits were part

of the top-10 of strongest correlations, which were all significant at

a false discovery rate of 0.125. Interestingly, we also found a high

positive correlation of peak amplitude with the performance in the

Morris water maze task [27] (ID 10816, n = 7, r = 0.74, p,0.05,

uncorrected p-value). This correlation, however, did not survive

correction for multiple testing, possibly because of the low number

of observations.

We then measured locomotion in a novel open field in several

BXD strains in our own laboratory. We used SEE software to

dissect locomotion into lingering and progression segments (see

Materials and Methods). Peak amplitude correlated negatively

with total distance moved (r = 20.52, p,0.005, data not shown) as

it was found also using the GeneNetwork database (Fig. 5B), and

with the duration of progression segments (r = 20.54, p,0.005,

Fig. 5C), but positively with the duration of lingering segments

(r = 0.48, p,0.01, Fig. 5D). Taken together, these findings indicate

that the inverse relation between peak amplitude and locomotion

in a novel environment is a robust effect.

QTL mapping identifies shared and unique genetic
influences on hippocampal traits

We used the six main traits, as derived from the cluster analysis

(Fig. 4C), for QTL mapping (see Materials and Methods). In total,

we identified two significant QTLs (p,0.05) and seventeen

suggestive QTLs (p,0.63) (Fig. 6). In Figures S1, S2, S3, S4, S5,

S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19

close-ups of the QTLs are shown. See Tables S5, S6, S7, S8, S9,

S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22,

Figure 2. BXD mouse strains have different local field potential
amplitudes. (A) Recordings from hippocampal slices in ACSF show
that mouse strains differ in the amplitude of local field potential (LFP)
fluctuations, as illustrated by representative traces recorded in strains
with the lowest (BXD11) and highest (BXD65) amplitudes in this
condition. (B) Also during carbachol-induced oscillations, we observed
marked amplitude differences amongst strains; BXD51 mice had the
highest, and BXD75 mice the lowest amplitudes. Depicted signals are
broadband (5–40 Hz) from CA3 stratum pyramidale.
doi:10.1371/journal.pone.0026586.g002

Genes Associated with Hippocampal Oscillations
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S23 for the location of the nineteen QTLs and the genes they

contain. Table S24 contains the locations of all QTL intervals.

Amplitude 1–45 Hz (ACSF) and correlation (ACSF) had

overlapping QTLs located on chromosome four (Fig. 6A, B).

Amplitude 1–45 Hz (CCH), peak amplitude, and correlation

(CCH) had overlapping QTLs on chromosome five; the one from

peak amplitude overlapped a QTL from Amplitude 1–45 Hz

(ACSF) (Fig. 6A, C–E and Fig. S3, S11, S14 and S17). Also, we

identified for each trait one or more suggestive QTLs that were

not found for other traits. The partially shared QTLs suggest that

the traits share genetic components in addition to having unique

genetic component(s). For example, peak frequency (Fig. 6F) had

no QTLs in common with other traits. This suggests a dissimilar

genetic underpinning of peak frequency and, e.g., peak amplitude.

Correlation with gene expression data points to
candidate genes

The nineteen suggestive or significant QTLs identified (see

above) varied in length from 2 to 19 Mb, and contained between 6

and 155 genes each. In order to evaluate these genes, we

correlated the hippocampal activity traits with expression data

from the hippocampus of BXD mice (see Materials and Methods).

For each of the six main traits, we selected genes within the QTLs

of the trait, and correlated the expression of these genes with the

trait. The significance of the correlations was determined with

permutation tests (see Materials and Methods). Table 1 gives an

overview of the eight genes from these nineteen QTLs that had

significant expression correlations. Peak amplitude was associated

with Plcb1 (phospholipase C, beta 1) and Cacna1b, the gene coding

for calcium channel alpha1B. The gene coding for calcium channel

alpha1E (Cacna1e) was linked to amplitude 1–45 Hz (CCH). Plcb1 is

known to influence hippocampal oscillations [28]. Cacna1b and

Cacna1e have been implicated in hippocampal LTP [29,30], but not

in the formation of synchronous network activity. For peak

frequency, we identified Eps15-homology domain protein 3

(Ehd3), which, like the other genes identified (Creb3, Psmc2, Dctn3,

and Ralgps2) has not yet been related to hippocampal activity.

Discussion

Neuronal oscillations have been implicated in cognitive and

emotional behavior [1,31,32] and are heritable [11,33,34] which

make quantitative traits derived from oscillatory activity potentially

useful in gene-finding strategies. Here, we searched for genes that

underlie variation in hippocampal network activity in vitro based on

Figure 3. Different properties of hippocampal network activity in vitro depend on different genes. (A) The mean and SEM of peak
amplitude in the CA1 stratum pyramidale for each of the 29 BXD strains. The heritability indicates that the peak amplitude is sensitive to genetic
variation of the BXD strains. (B–D) Scatter plots of trait means per BXD strain of peak amplitude in CA1 stratum pyramidale versus (B) the integrated
amplitude at 4–7 Hz during the ACSF condition in CA3 stratum pyramidale, (C) the integrated amplitude at 13–25 Hz in CA1 stratum pyramidale, and
(D) the peak amplitude in CA3 stratum pyramidale. The correlation of the strain means is an estimate of the genetic correlation, which ranged from
low (B) to high (D), indicating different and similar underlying genes, respectively.
doi:10.1371/journal.pone.0026586.g003

Genes Associated with Hippocampal Oscillations
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29 recombinant inbred strains from the BXD population [35]. QTL

mapping pointed to regions on the genome associated with

variability in amplitude of oscillatory and non-oscillatory activity,

as well as in functional coupling between hippocampal areas. To

evaluate genes in the QTLs for a potential contribution in

hippocampal activity, we correlated their expression in the

hippocampus with the hippocampal activity traits, and identified

eight candidate genes.

Hippocampal activity traits have relatively low heritability
in BXD strains

The heritability estimates of amplitude and functional coupling

ranged from 1 to 25%, which is similar to what we found in a

population of eight inbred mouse strains [11]. Higher-order

statistical measures of oscillatory dynamics, such as long-range

temporal correlations [36] and markers from Langevin dynamics

[37] exhibit low—albeit significant—heritability, and were not

included in the present QTL analysis [38].

To our knowledge, heritability of in vivo hippocampal gamma-band

amplitude has not been estimated yet, but EEG studies in humans

show that the early auditory gamma-band response has a heritability

of 65% [39], and heritability of amplitude in the classical delta-, theta-

, alpha- and beta-frequency bands ranges from 40 to 90% [33]. Thus,

the heritability we observed here may be considered low. This may be

explained by the environmental noise introduced by the experimental

procedure, e.g., the slicing of the hippocampus. Moreover,

heritability depends also on the population in which it is measured;

the heritability we estimated holds for the offspring of the strains

C57BL/6J and DBA/2J, which obviously does not comprise the

genetic variation as present in the human population.

Reduction of traits inspired by cluster analysis
We used cluster analysis to evaluate the genetic correlations of

the 198 hippocampal activity traits. The clusters showed which

traits are strongly correlated and, therefore, could be merged. The

clusters we identified exhibited a great overlap with six main

Figure 4. Clusters of genetically correlated traits correspond to distinct experimental conditions and properties of oscillations. The
198 traits (columns) for each of the 29 mouse strains (rows) were clustered according to their genetic correlation. (A) A threshold of 0.45 has been
introduced to mark the major clusters in the dendrogram. (B) The mean trait value is represented in color code for each strain after normalization
across strains, i.e., for every column the mean equals zero and the variance equals one. The clustering in (A) largely corresponds to six classes of traits
as indicated by the color-coding in (C), i.e., the peak frequency and peak amplitude for the carbachol (CCH) condition, and the broad-band amplitude
(1–45 Hz) and the inter-regional correlations for both conditions. We based the QTL mapping on the mean of the traits within these six classes (see
labeling below the cluster diagram).
doi:10.1371/journal.pone.0026586.g004

Genes Associated with Hippocampal Oscillations
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classes of traits representing experimental conditions and type of

analyses. We chose to supervise the merging of traits by using the

classes instead of the exact clusters. This approach had the

advantage over commonly used unsupervised methods, such as

principal component analysis, that the resulting traits have a

straightforward analytic and physiological interpretation. By

collapsing the information on hippocampal subregions and

frequency bands, we reduced the amount of traits to six. The

cluster analysis showed that the genetic correlation between the

traits measured during the ACSF condition and those during the

CCH condition is relatively low. The QTL mapping, however,

showed that this correlation is substantial: the traits from the

ACSF condition have some overlapping and some non-overlap-

ping QTLs with the traits from the carbachol condition, suggesting

a partially unique and partially shared genetic architecture.

Therefore, it is also likely that partially shared and partially

unique downstream mechanisms underlie the traits from the two

conditions.’’

Genetic correlations with behavioral traits from the
GeneNetwork

The negative genetic correlation between hippocampal volume

and hippocampal activity traits suggests that there are genes that

influence both traits. In two subsequent BXD studies [20,40], a

QTL for hippocampal volume was reported at chromosome 1,

which overlaps with one of the QTLs we identified for amplitude

1–45 Hz (CCH). This QTL might contain genes that influence

both hippocampal activity and hippocampal volume. Recently it

has been reported that tenascin-C deficient mice have smaller

hippocampal subregions and higher gamma oscillation amplitude

compared to wild-type mice [41], which corroborates our finding

that small hippocampal volume is associated with high amplitude

oscillations.

Locomotion in a novel open field is a complex trait used as a

measure for, e.g., exploration, anxiety and hyperactivity. The

locomotor behavior of a mouse that is placed in a novel

environment can be divided in lingering and progressing segments

[42]. During lingering, the animal is actively gathering informa-

tion about the environment by sniffing, rearing and looking

around. During progression, the animal moves from one location

to the next. We observed that peak amplitude was negatively

correlated with the duration of the progression segments, but

positively with the duration of the lingering segments. Future

studies should test whether the same relation holds between

locomotion and network oscillations in freely behaving mice. This

is not unlikely, because hippocampal oscillations in the 20–40 Hz

range are prominent when mice enter a novel environment [43],

and gamma oscillations have been associated with novelty in rats

[44].

The positive correlation between the performance in the Morris

water maze and the peak amplitude suggests that BXD strains

capable of producing high-amplitude gamma have good spatial

Figure 5. Amplitude of carbachol-induced oscillations shows prominent genetic correlations with hippocampal volume and
locomotion traits. Scatter plots of (A) amplitude 1–45 Hz versus hippocampus volume, and (B) peak amplitude versus locomotion in novel open
field. More detailed analysis of locomotion revealed a negative correlation with the duration of progression segments (C), but a positive correlation
with the duration of lingering segments (D). The black dots represent BXD strain means. IDs refer to the GeneNetwork database.
doi:10.1371/journal.pone.0026586.g005

Genes Associated with Hippocampal Oscillations
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memory. Elevated activity of gamma oscillations during encoding

and retention of information in working memory has been

reported in humans [4,45] and in rodents [5] Our results,

however, provide the first indication that genetic predisposition for

high-amplitude gamma oscillations is beneficial for working-

memory performance.

Genes previously associated with carbachol-induced
hippocampal oscillations

Genetic influences on hippocampal carbachol-induced oscilla-

tions in vitro have been studied extensively and it has pointed to

several genes involved, including Chrm1 [46], Gabra5 [47], Gabrb2

[48], Plcb1 [28]. Plcb1 is essential for the genesis of carbachol-

induced oscillations as indicated by the inability to induce

oscillations with carbachol in the hippocampus of Plcb1 knockout

mice [28]. Plcb1 is one of the candidate genes we identified, which

can be regarded as an internal validation of our experimental and

statistical procedures.

Our paradigm did not reveal other genes previously associated

with hippocampal oscillations. A reason for this may be that the

influence of such a gene may be caused by only a few single-

nucleotide polymorphisms (SNPs). If C57BL/6J and DBA/2J do

not differ in these SNPs, the paradigm we followed would not have

revealed these genes. Moreover, most of the studies that try to link

genes to brain activity use knockout-mice, in which the effect of

the particular gene is likely to be stronger than in the BXD

population. Also, the effect sizes of the genes known to be involved

in hippocampal oscillations may be too small to be detected by our

analysis.

Novel candidate genes associated with hippocampal
activity

Our combined use of QTL mapping and correlation with

expression data has some notable advantages. The QTL mapping

was merely used to select stretches of the genome for further

analysis, which justifies the use of suggestive significance. We

qualified our findings with the significance level of the correlation

with the expression data of genes within the QTLs. This

significance increases because of the use of the relatively small

QTLs.

We identified two candidate genes for shaping hippocampal

network that code for calcium channels: the alpha1b subunit

(Cacna1b), and the alpha1e subunit (Cacna1e). Calcium channels

mediate synaptic transmission [49], and are essential in the

formation of thalamo-cortical gamma band activity [50]. Also,

Cacna1e and Cacna1b facilitate hippocampal long-term potentiation

(LTP) [29,30], and the Cacna1b knock-out mouse exhibits impaired

long-term memory and LTP [51]. Thus, Cacna1e and Cacna1b are

interesting candidates for playing a role in hippocampal

oscillations. Moreover, Cacna1b has been associated with schizo-

phrenia in three recent linkage studies [52,53,54]. Thus, we may

hypothesize that alterations in Cacna1e and Cacna1b affect

hippocampal network activity such as to impair memory

performance in, for example, schizophrenia patients known to

suffer from memory impairment.

In a QTL for correlations (ACSF) we identified the gene Creb3,

coding for the transcription factor cAMP responsive element-

binding protein 3. Creb1 plays an important role in (spatial)

memory [55]; increasing the expression level of Creb1 in the

hippocampus facilitates long-term memory [56]. Therefore, it

might well be that Creb3 is involved in hippocampal activity as

well. The other gene identified for this trait is Dctn3, which has a

function in the cytoskeleton [57]. Peak frequency was linked to

Ehd3 which is involved in endosome to Golgi transport [58].

Psmc2, associated with amplitude 1–45 Hz (ACSF), is involved in

developmentally programmed cell death [59]. Ralgps2, linked to

amplitude 1–45 Hz (CCH), affects neurite outgrowth [60].

In summary, we identified eight candidate genes for influencing

different aspects of hippocampal network activity. Future research,

by means of knockout mice or pharmacological manipulations,

should reveal the mechanisms by which these genes affect

hippocampal activity and related cognitive functions.

Table 1. QTL mapping and correlation with gene expression revealed eight candidate genes for influencing hippocampal activity.

trait location QTL LRS genes Correlation p-value

Amplitude 1–45 Hz (ACSF) chr 5 16.522–22.723 14.6 Psmc2 20.63 0.01

Correlation (ACSF) chr 4 39.167–44.254 15.1 Dctn3 20.59 0.04

Creb3 20.59 0.04

Amplitude 1–45 Hz (CCH) chr 1 156.371–160.384 12.4 Ralgps2 0.61 0.03

Cacna1e 0.62 0.01

Peak amplitude chr 2 132.507–135.784 18.2 Plcb1 0.58 0.02

chr 2 22.673–25.693 12.2 Cacna1b 0.57 0.03

Peak frequency chr17 72.002–76.447 12.6 Ehd3 0.60 0.005

Each row contains the information belonging to one candidate gene. Indicated are the hippocampal activity trait associated with the gene, the location of the QTL
(chr = chromosome, location in Megabases) that harbors the gene found, the LRS score of the QTL, the gene symbol, the correlation between trait and level of
expression of the gene, and finally the p-value from the correlation, computed with a permutation test.
doi:10.1371/journal.pone.0026586.t001

Figure 6. QTL mapping of six hippocampal activity traits peaks at 19 different locations. The LRS scores (y-axis) quantify the relation
between genomic markers (x-axis) and six traits. Integrated amplitude between 1 and 45 Hz at the ACSF (A) and carbachol (CCH) condition (C), peak
amplitude (D) and frequency (F) at the carbachol condition, inter-regional correlation at the ACSF (B) and carbachol condition (E). The red horizontal
lines indicate the threshold for significance (p = 0.05), whereas the grey lines indicate suggestive significance (p = 0.63). For the traits depicted here,
we selected the 18 QTLs above the suggestive significance level and correlated the hippocampal traits with expression data of genes within these
QTLs.
doi:10.1371/journal.pone.0026586.g006
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Materials and Methods

Animals, hippocampal slice preparation and extracellular
recording

All experiments were performed in accordance with the

guidelines and under approval of the Animal Welfare Committee

of the VU University Amsterdam. BXD strains were originally

received from Jackson Lab, or from Oak Ridge Laboratory

(BXD43, BXD51, BXD61, BXD65, BXD68, BXD69, BXD73,

BXD75, BXD87, BXD90), and were bred by the NeuroBsik

consortium. In this study we used in total 586 slices from 322

animals (62% male), from 29 BXD strains: BXD01 (n = 20),

BXD02 (n = 28), BXD08 (n = 18), BXD11 (n = 12), BXD12

(n = 20), BXD13 (n = 16), BXD16 (n = 22), BXD27 (n = 13),

BXD28 (n = 13), BXD29 (n = 8), BXD31 (n = 14), BXD32

(n = 23), BXD33 (n = 18), BXD34 (n = 24), BXD39 (n = 17),

BXD40 (n = 18), BXD42 (n = 28), BXD43 (n = 17), BXD51

(n = 36), BXD55 (n = 22), BXD61 (n = 16), BXD65 (n = 18),

BXD68 (n = 20), BXD69 (n = 28), BXD73 (n = 27), BXD75

(n = 23), BXD87 (n = 31), BXD90 (n = 19), and BXD96 (n = 17).

Per animal, maximally 2 slices were used. Unanaesthetized mice

were decapitated at postnatal day 13–15. The brains were quickly

dissected and placed in ice-cold artificial cerebrospinal fluid

(ACSF) containing 125 mM NaCl, 25 mM NaHCO3, 3 mM KCl,

1.2 mM NaH2PO4, 1 mM CaCl2, 3 mM MgSO4, and 10 mM

D(+)-glucose (carboxygenated with 5% CO2/95% O2). Horizontal

slices (400 mm thick) from the ventral hippocampus were cut by a

microtome (Microm, Waldorf, Germany). Slices were stored in an

interface storage chamber at room temperature and placed in

ACSF containing 2 mM CaCl2 and 2 mM MgSO4. After 1 hour,

slices were placed on 8-by-8 planar electrode grids with 200 mm

spacing between electrodes (the 4 corners of the grid did not

contain electrodes; see Fig. 1A) and polyethylenimine coating

(Sigma, St. Louis, MO, USA). The slices were left for 1 hour in a

chamber with humidified carbogen gas before they were placed in

the recording unit. During recordings the flow rate was 4–5 ml/

min and the temperature was kept at 3060.3uC. Carbachol was

purchased from Sigma. Local field potentials (LFPs) were

measured at each of the 60 electrodes, sampled at 1 kHz, down-

sampled off-line to 200 Hz and converted into Matlab (The

Mathworks, USA) file format. Off-line analysis was done using

custom written scripts in Matlab.

Slice selection and subregion classification
For each experiment a photograph was taken of the slice in the

recording unit, to visualize the locations of the electrodes in the

hippocampus (Fig. 1A). The hippocampus consists of three main

anatomical regions: CA1, CA3 and dentate gyrus (DG). We

divided CA3 and CA1 into the subregions stratum oriens, stratum

pyramidale and stratum radiatum/lacunosum-moleculare, and

DG into stratum moleculare, stratum granulosum and hilus

(Fig. 1B). To classify electrode locations into one of these nine

subregions, we used an in-house written interactive Matlab

procedure based on the photograph of the electrode grid. Using

Fourier analysis (see below), we determined for each electrode

whether oscillatory activity was present. A slice was excluded from

further analysis if none of the 60 electrodes showed oscillations.

For each condition, in order to detect electrodes producing

noisy signals and transient artifacts before the quantitative trait

analysis, each slice recording was subjected to a principal

component analysis. If noisy signals were present, then the first

few spatial components had high values only for one or a few of

these signals. These signals were identified and excluded. The time

series of the remaining signals were averaged; this average was

used to identify noisy segments. Samples from this average with

absolute values exceeding five times the standard deviation of the

averaged signal, were excluded from each signal before the

analysis.

Experimental protocol to measure hippocampal network
activity

After placing the slices in the recording units with ACSF,

15 minutes of spontaneous activity was recorded (see Fig. 1C).

These first 15 minutes will be referred to as the ‘‘ACSF condition’’.

Then, carbachol (25 mM) was bath applied to the slice. Carbachol-

induced oscillations at around 20 Hz were initially unstable in

frequency and amplitude, but stabilized after 45 minutes. After this

45-minute wash-in period fast network oscillations were recorded

for a period of 30 minutes, which will be referred to as the

‘‘carbachol condition’’. In Figure 1C a time-frequency representa-

tion of a representative signal is shown for a complete recording.

Example LFP traces for the two conditions are shown in Figure 1D.

The frequency of oscillations increased with temperature (Fig. 1F),

which has been observed previously [61,62]. Thus, the oscillations

at around 20 Hz, which were recorded at 30uC in the present

experiments, are expected to have frequencies in the gamma range

(.30 Hz) at the physiological temperature of 36.9uC. However, the

amplitude of oscillations at higher temperatures was markedly lower

than at 30uC, resulting in an unfavorable signal-to-noise ratio.

Therefore, all experiments were performed at 30uC.

Fourier analysis
For the two conditions (ACSF and carbachol), and for each

electrode that was classified into one of the nine regions, we

calculated the Fourier amplitude spectrum using Welch’s method

[63]. Figure 1E shows representative spectra in the two conditions.

For the ACSF condition, we calculated the integrated amplitude in

the frequency bands 1–4, 4–7, 7–13, 13–25, 25–35, and 35–

45 Hz. In the carbachol condition, we observed oscillations at

around 20 Hz, which is similar to previous reports using a

temperature of around 30uC in mouse hippocampus [11,64,65].

We calculated the amplitude and the frequency of these

oscillations, which we will refer to as the peak amplitude and the

peak frequency, respectively. Moreover, a 1/f curve was fitted to

the spectrum outside the interval at which the peak occurred, and

from this curve we calculated the integrated amplitude in the

frequency bands 1–4, 4–7, 7–13, 13–25, 25–35, and 35–45 Hz.

For each of these measures, the traits we used for the cluster

analysis (see below) were the mean trait values across electrodes

per anatomical subregion (n = 54 traits for the ACSF condition,

n = 72 traits for the carbachol condition).

To establish whether oscillations were detected at a given

electrode, we applied the following procedure. First, a frequency

interval in which the peak of the spectrum occurred was determined

visually, e.g., for the spectrum in Figure 1E this interval would be

from 10 to 25 Hz. Next, a 1/f curve was fitted to the spectrum

outside this interval. This 1/f curve was then subtracted from the

original spectrum. Finally, a Gaussian curve was fitted to the

remaining spectrum. If the peak of this Gaussian curve did not

exceed the 95% confidence interval of the fitted 1/f curve, we

classified the signal as not oscillating. Slices were excluded from

further analysis when none of the electrodes detected oscillations.

Interaction between hippocampal regions
To quantify the interaction between two hippocampal subre-

gions, e.g., between CA1 stratum oriens and CA3 stratum oriens,

we calculated a suitable cross-correlation measure (as described
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below) between signals from all possible pairs of electrodes from

these subregions, and used the mean over these pairs for the

cluster analysis (see below).

Oscillatory activity was not observed in the ACSF condition and,

therefore, we quantified cross-correlations between subregions in

this condition using Pearson’s linear correlation of the LFPs. Prior to

this analysis, the signals were filtered between 5 and 40 Hz to

remove the fairly large amount of noise outside this interval. Thus,

for every pair of subregions, the mean correlation over all possible

electrode-pairs from the subregion-pair was used (n = 36 traits).

In the carbachol condition, in contrast, the signals were strongly

oscillatory. Therefore, we calculated the phase-locking factor (PLF)

between signals in this condition. The PLF is a well established

measure for quantifying the interaction between two oscillating

signals that can be out of phase and possibly have independent

amplitude fluctuations [66,67]. To reduce volume conduction effects,

the current-source density of the LFPs was computed [9,68]. After

this transformation, we computed the phase-locking factors between

signals that were band-pass filtered 4 Hz around the peak frequency

of the fast network oscillations, for every subregion pair (n = 36 traits).

Normalization
To specifically analyze the effect of carbachol, we normalized the

amplitude and correlation traits of carbachol-induced oscillations by

dividing them by the same traits from the ACSF condition, except

for the peak frequency, because there was no peak in the amplitude

spectrum during ACSF. For the same reason, the peak amplitude

from the carbachol condition was normalized by the integrated

amplitude between 15 and 25 Hz from the ACSF condition. The

PLF traits from the carbachol condition were divided by the

correlation traits from the ACSF condition. Thus, the normalized

traits express the relative sensitivity to experimental manipulations.

ANOVA
To determine whether a given trait differed significantly

between mouse strains, we performed a one-way ANOVA and

the corresponding F-test with the trait as dependent variable and

the mouse strain as factor. The null hypothesis of this test is that

for at least one strain the trait mean is significantly different from

the trait means of the other strains. Where necessary, the data

were transformed with the natural logarithm order not to violate

the normality assumption for ANOVA.

Heritability
The observed value of a trait (e.g. peak amplitude) from a given

slice is the result of both genetic and environmental influences,

including measurement noise. To quantify the extent to which a

trait is influenced by genetic factors, we computed its heritability.

The heritability of a trait is a measure for the proportion of the

total variance of the trait that is caused by genetic variation. The

remainder of the variance is assumed to be due to environmental

factors. For inbred strains the heritability h2 of a trait can be

defined as h2~
s2

G=2

s2
G=2zs2

E

, where s2
G is the component of

variance between strains, and s 2
E the component of variance

within strains [69]. The value of h2 ranges between 0 and 1, where

0 means no genetic contribution to the trait, and 1 means that the

trait is controlled only by genetic factors. We estimated heritability

as described in detail in Jansen et al. (2009).

Genetic correlation between traits
To reveal the extent to which two traits share genetic factors, we

studied the correlation between the genetic effects of the two traits,

the so-called genetic correlation. For inbred strains, we can

estimate the genetic correlation between two traits as the Pearson’s

linear correlation between the 29 mouse strain means of one trait

and the 29 mouse strain means of the other trait [69,70]. The

mouse strain means were taken over all slices from a given mouse

strain. The estimated genetic correlations were used in a cluster

analysis, as explained below.

Cluster analysis of traits
In order to identify clusters of genetically correlated traits,

hierarchical clustering was performed on the complete set of

n = 198 traits. In this analysis, traits are clustered based on a

distance measure between the traits. To measure the distance

between two traits, we subtracted the estimated genetic correlation

between the two traits from 1, so traits with high genetic

correlation are close to each other. No strong negative correlations

were present: using absolute genetic correlation yielded similar

results. Average linkage was used as a clustering method. This

method starts with as many clusters as there are traits, and then

sequentially joins the two clusters that are closest to each other in

terms of the mean of distances between all possible pairs of traits in

the two clusters; the procedure ends when all traits are joined in

one cluster. A particular classification of traits into clusters is

obtained by setting a threshold for the minimal distance that the

clusters are allowed to have between them. The result of the

cluster analysis was visualized in a dendrogram, in which the

sequential union of clusters was depicted together with the distance

value (the height of the horizontal lines that connect the objects or

clusters) leading to this union. The threshold procedure can be

visualized by a horizontal line in the dendrogram; the clusters

under this line correspond to that particular threshold.

BXD recombinant inbred strains and QTL mapping
The BXD strains were created by crossing the inbred mouse

strains C57BL/6J and DBA/2J and by inbreeding several groups

of the crossed offspring [35]. It is one of the largest mammalian

recombinant inbred strain panels currently available. Genetically,

each of these BXD strains is a unique combination of the C57BL/

6J and DBA/2J strains. The chromosomes of the BXD strains

consist of haplotypes (stretches of chromosomes inherited intact

from the parental strains). Each BXD strain was genotyped at

3795 markers covering the entire genome; each marker was

classified as originating from C57BL/6J or DBA/2J. In order to

compute the correlation between a trait and these markers, the

markers were encoded, 21 for DBA/2J version of the marker and

1 for C57BL/6J version of the marker. Markers that correlate with

a trait are called QTLs. We used WebQTL (www.genenetwork.

org) to compute and visualize the QTL interval mapping. In

WebQTL, the correlation between a marker and a trait was

transformed into likelihood ratio statistics (LRS) in the following

way: LRS = N*log(1/(1-r2)), where N is the number of strains, and r

the correlation [71]. For intervals with unknown genotype, LRS

scores of flanking markers were linearly interpolated. Threshold

for significant LRS scores were computed using a permutation

test: the N strain means from the trait were permuted, and for this

permutation the maximum LRS score over all markers was

computed, which resulted in an observation of the null-

distribution. Significance of LRS scores was computed by

comparing them with the empirical null-distribution. LRS scores

were termed significant if p,0.05, and suggestive if p,0.63. The

QTL mapping was used to select regions of the genome for further

analysis, which justifies the use of suggestive significance. The

QTL intervals were determined with the 1 LOD drop-off method

[72]; the interval ends where the LRS score drops more than 4.61
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LRS ( = 1 LOD) with respect to the maximum LRS score in the

interval. As in previous studies using BXD strains [73,74], we did

not use the parental strains for QTL mapping.

Correlations with traits from the GeneNetwork
phenotype database

The GeneNetwork database (www.genenetwork.org) contains

more than 2000 phenotypes from previous studies using BXD

strains. We computed genetic correlations between the hippo-

campal activity traits and two subsets of phenotypes from this

database. By using subsets, the correction for multiple testing is

reduced. To further reduce the risk of chance correlations, we only

included phenotypes from the database that were reported for

more than six BXD strains that were also used in the present

study. The first subset (n = 35) contained physiological traits of the

hippocampus. The second subset (n = 351) contained the behav-

ioral traits that do not involve pharmacological manipulations. See

Tables S1 and S2 for trait description and GeneNetwork IDs of

both subsets.

To correct the significance for multiple testing, we used the false

discovery rate (FDR) [75,76]. The FDR controls the expected

proportion of erroneously rejected hypothesis. It is the number of

falsely rejected hypotheses divided by the total number of rejected

hypotheses. In our case, the total number of rejected hypotheses is

the number of observed correlations with p-values lower than a

threshold. The number of falsely rejected hypotheses was

estimated with a permutation paradigm. The hippocampal activity

trait was permuted thousand times across strains, and the

correlation between the permuted trait and the traits from the

subsets was computed. The number of falsely rejected hypotheses

was estimated as the average number of correlations with p-values

smaller than the threshold.

Gene expression data
Data on gene expression in hippocampal tissue of adult mice,

measured with Affymetrix Mouse Exon 1.0 ST Arrays, were

accessed through GeneNetwork (UMUTAffy Hippocampus Exon

(Feb09) RMA, accession number GN206, from www.genenet-

work.org). The original data set contained over 1.2 million probe

sets at exon level uniformly spread over the entire genome. Each

probe set consisted of the RMA-summarized [77] value of the

collective probes each targeting 25 base pairs, measured at adult

mice from BXD strains [78]. For our analysis, we removed data

from probe sets targeting regions that contain SNPs that differed

between the two parental strains (according to databases

snp_celera_b37 and snp_perlegen_b37 (2008) downloaded from

http://phenome.jax.org). Probe sets targeting introns and inter-

genic regions were also removed, which reduced the amount of

probe sets to 340318. We analyzed the expression per gene by

taking the mean over all probes that target the same gene. For

each hippocampal activity trait, we only calculated correlations

with expression of genes from the QTLs of the trait. Significance

levels for these correlations were determined with a permutation

test; the hippocampal activity trait was permuted across strains,

and the maximum of the correlations between the permuted trait

and the expression of the genes was computed. This was done a

thousand times; the thousand maxima so obtained formed the

empirical null distribution against which the significance of a

correlation was tested.

Subjects for locomotion in open field test
Six-week-old male mice (n.10 per strain, see section ‘‘animals,

slice preparation and recording’’ for strain names) arrived in the

facility in different batches in a period spanning 2 years. Mice

were housed individually in Macrolon cages on sawdust bedding,

which were, for the purpose of animal welfare, enriched with

cardboard nesting material and a curved PVC tube. Food (Harlan

Teklad) and water was provided ad libitum. All mice were

habituated to the facility for at least 7 days before testing started.

Prior to the open field testing described below, mice had been

exposed to novelty tests in the home cage, an elevated plus maze

and a light dark box apparatus, as described previously [79].

Housing and testing rooms were controlled for temperature,

humidity and light-dark cycle (7 AM lights on, 7 PM lights off;

testing during the light phase).

Locomotion in open field
All experimental procedures were approved by the local animal

research committee and complied with the European Council

Directive (86/609/EEC). Mice were introduced into a corner of a

white square open field (50650 cm, walls 35 cm high) illuminated

with a single white fluorescent light bulb from above (130 lx), and

exploration was tracked for 10 minutes (12.5 frames/s; EthoVision

3.0, Noldus Information Technology). The SEE software (Strategy

for the Exploration of Exploration [42,80] was used to smoothen

path shape to calculate the total distance moved. Furthermore,

SEE uses the distribution of speed peaks to parse the locomotor

data into lingering segments (slow local movements) and

progression segments, which together constitute the total distance

moved.

Supporting Information

Figure S1 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (ACSF), located at Chr4 40.937–49.610 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S2 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (ACSF), located at Chr4 53.915–65.605 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S3 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (ACSF), located at Chr5 16.516–22.717 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S4 Zoom in of the QTL for the trait Correlation
(ACSF), located at Chr4 38.926–44.246 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S5 Zoom in of the QTL for the trait Correlation
(ACSF), located at Chr4 58.377–62.347 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:
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a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S6 Zoom in of the QTL for the trait Correlation
(ACSF), located at Chr14 56.052–59.824 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S7 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (CCH), located at Chr1 156.053–160.478 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S8 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (CCH), located at Chr1 109.358–128.626 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S9 Zoom in of the QTL for the trait Amplitude 1–
45 Hz (CCH), located at Chr2 57.639–60.486 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S10 Zoom in of the QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr2 65.6704–72.240 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S11 Zoom in of the QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr5 3.143–12.371 Mb. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S12 Zoom in of the QTL for the trait Peak
amplitude, located at Chr2 19.000–25.727 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S13 Zoom in of the QTL for the trait Peak
amplitude, located at Chr2 132.641–135.954 MB. The

LRS scores (y-axis) quantify the relation between genomic markers

(x-axis) and the trait. Parental allele effect is shown in green and

red: a green line indicates that DBA/2J alleles increase trait values.

A red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S14 Zoom in of the QTL for the trait Peak
amplitude, located at Chr5 3.143–20.086 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S15 Zoom in of the QTL for the trait Correlation
(CCH), located at Chr2 76.832–80.436 Mb. The LRS scores

(y-axis) quantify the relation between genomic markers (x-axis) and

the trait. Parental allele effect is shown in green and red: a green

line indicates that DBA/2J alleles increase trait values. A red line

indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S16 Zoom in of the QTL for the trait Correlation
(CCH), located at Chr2 133.463–135.918 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S17 Zoom in of the QTL for the trait Correlation
(CCH), located at Chr5, Chr5 4.468–12.371 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S18 Zoom in of the QTL for the trait Peak
frequency, located at Chr12 30.140–35.762 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Figure S19 Zoom in of the QTL for the trait Peak
frequency, located Chr17 72.196–76.447 Mb. The LRS

scores (y-axis) quantify the relation between genomic markers (x-

axis) and the trait. Parental allele effect is shown in green and red:

a green line indicates that DBA/2J alleles increase trait values. A

red line indicates that C57BL/6J alleles increase trait values.

(PNG)

Table S1 Heritability scores (h) and P-values from F
statistics from the ANOVAs of all the traits derived in
the ACSF condition (spontaneous activity). The trait names

are coded: Amplitude a_b_Hz_c indicates the integrated ampli-

tude between a and b Hz, in region number c; Corr(a,b) indicates

the correlation of activity between region a and region b. The

numbers refer to the following regions: 1 = CA3 stratum

radiatum/lacunosum moleculare, 2 = CA3 stratum pyramidale,

3 = CA3 stratum oriens, 4 = CA1 stratum radiatum/lacunosum

moleculare, 5 = CA1 stratum pyramidale, 6 = CA1 stratum oriens,

7 = Dentate Gyrus hilus, 8 = Dentate Gyrus stratum granulosum,

9 = Dentate Gyrus stratum moleculare.

(XLS)

Table S2 Heritability scores (h) and P-values from F
statistics from the ANOVAs of all the traits derived in
the carbachol condition (oscillations). The trait names are

coded: Amplitude a_b_Hz_c indicates the integrated amplitude

between a and b Hz, in region c. Amplitude_a is the peak amplitude

in region a, Frequency_a indicates the peak frequency in region a.
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PLF(a,b) is the phase locking factor of the activity between region a

and region b. The numbers refer to the following regions: 1 = CA3

stratum radiatum/lacunosum moleculare, 2 = CA3 stratum pyr-

amidale, 3 = CA3 stratum oriens, 4 = CA1 stratum radiatum/

lacunosum moleculare, 5 = CA1 stratum pyramidale, 6 = CA1

stratum oriens, 7 = Dentate Gyrus hilus, 8 = Dentate Gyrus stratum

granulosum, 9 = Dentate Gyrus stratum moleculare.

(XLS)

Table S3 Description and IDs of first subset of
phenotypes from the GeneNetwork phenotype database:
physiological hippocampal traits.
(XLS)

Table S4 Description and IDs of second subset of
phenotypes from the GeneNetwork phenotype database:
behavioral traits.
(XLS)

Table S5 List of genes in a QTL for the trait Amplitude
1–45 Hz (ACSF), located at Chr4 40.937–49.610 Mb.
(XLS)

Table S6 List of genes in a QTL for the trait Amplitude
1–45 Hz (ACSF), located at Chr4 53.915–65.605 Mb.
(XLS)

Table S7 List of genes in a QTL for the trait Amplitude
1–45 Hz (ACSF), located at Chr5 16.516–22.717 Mb.
(XLS)

Table S8 List of genes in a QTL for the trait Correlation
(ACSF), located at Chr4 38.926–44.246 Mb.
(XLS)

Table S9 List of genes in a QTL for the trait Correlation
(ACSF), located at Chr4 58.377–62.347 Mb.
(XLS)

Table S10 List of genes in a QTL for the trait
Correlation (ACSF), located at Chr14 56.052–59.824 Mb.
(XLS)

Table S11 List of genes in a QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr1 156.053–160.478 Mb.
(XLS)

Table S12 List of genes in a QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr1 109.358–128.626 Mb.
(XLS)

Table S13 List of genes in a QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr2 57.639–60.486 Mb.
(XLS)

Table S14 List of genes in a QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr2 65.6704–72.240 Mb.
(XLS)

Table S15 List of genes in a QTL for the trait Amplitude
1–45 Hz (CCH), located at Chr5 3.143–12.371 Mb.
(XLS)

Table S16 List of genes in a QTL for the trait Peak
amplitude, located at Chr2 19.000–25.727 Mb.
(XLS)

Table S17 List of genes in a QTL for the trait Peak
amplitude, located at Chr2 132.641–135.954 MB
(XLS)

Table S18 List of genes in a QTL for the trait Peak
amplitude, located at Chr5 3.143–20.086 Mb.
(XLS)

Table S19 List of genes in a QTL for the trait
Correlation (CCH), located at Chr2 76.832–80.436 Mb.
(XLS)

Table S20 List of genes in a QTL for the trait
Correlation (CCH), located at Chr2 133.463–
135.918 Mb.
(XLS)

Table S21 List of genes in a QTL for the trait
Correlation (CCH), located at Chr5, Chr5 4.468–
12.371 Mb.
(XLS)

Table S22 List of genes in a QTL for the trait Peak
frequency, located Chr17 72.196–76.447 Mb.
(XLS)

Table S23 List of genes in a QTL for the trait Peak
frequency, located at Chr12 30.140–35.762 Mb.
(XLS)

Table S24 The locations of the 19 QTLs.
(XLS)
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