391 research outputs found
Intramolecular dynamics. I. Curvilinear normal modes, local modes, molecular anharmonic Hamiltonian, and application to benzene
The Hamiltonian based on curvilinear normal modes and local modes (CNLM) is discussed using Wilson's exact vibrational Hamiltonian as basis, the CNLM representation diagonalizing only the normal mode block of FG matrix in curvilinear internal coordinates. Using CNLM the kinetic and potential energy operators for benzene are given, including cubic and quartic anharmonicity in the potential energy and cubic and quartic terms in the kinetic energy expansion in curvilinear coordinates. Using symmetrized coordinates and cubic and higher force constants the number and identity of the independent symmetry allowed (A1g) such force constants are obtained. The relation to conventional anharmonic force constants is then given and the allowed contributions of the latter are obtained. The results are applied to CH overtone spectra and intramolecular vibrational dynamics in Part III of this series
Epitaxial Synthesis of Blue Phosphorene
Phosphorene is a new two-dimensional material composed of a single or few
atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable
direct band gap and high carrier mobility values, which make it suitable for a
large variety of optical and electronic devices. However, the synthesis of
single-layer phosphorene is a major challenge. The standard procedure to obtain
phosphorene is by exfoliation. More recently, the epitaxial growth of
single-layer phosphorene on Au(111) has been investigated by molecular beam
epitaxy and the obtained structure has been described as a blue-phosphorene
sheet. In the present study, large areas of high-quality monolayer phosphorene,
with a band gap value at least equal to 0.8 eV, have been synthesized on
Au(111). Our experimental investigations, coupled with DFT calculations, give
evidence of two distinct phases of blue phosphorene on Au(111), instead of one
as previously reported, and their atomic structures have been determined.Comment: This paper reports on the epitaxial synthesis of blue phosphoren
Responsive Polymers for Biosensing and Protein Delivery
In this feature article, we review some of the most recent advances in the field of materials chemistry for biosensing, disease diagnostics, and drug delivery. Our recent work on the development of responsive polymer-based platforms for biosensing and drug delivery will also be highlighted. This feature article is meant to outline the breadth of the utility of polymer-based materials for select applications, as well as their enormous potential impact on future technologies
Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing
Multi-Scale Morphological Analysis of SDSS DR5 Survey using the Metric Space Technique
Following novel development and adaptation of the Metric Space Technique
(MST), a multi-scale morphological analysis of the Sloan Digital Sky Survey
(SDSS) Data Release 5 (DR5) was performed. The technique was adapted to perform
a space-scale morphological analysis by filtering the galaxy point
distributions with a smoothing Gaussian function, thus giving quantitative
structural information on all size scales between 5 and 250 Mpc. The analysis
was performed on a dozen slices of a volume of space containing many newly
measured galaxies from the SDSS DR5 survey. Using the MST, observational data
were compared to galaxy samples taken from N-body simulations with current best
estimates of cosmological parameters and from random catalogs. By using the
maximal ranking method among MST output functions we also develop a way to
quantify the overall similarity of the observed samples with the simulated
samples
Differentiation Therapy Targeting the β-Catenin/CBP Interaction in Pancreatic Cancer.
BACKGROUND:Although canonical Wnt signaling is known to promote tumorigenesis in pancreatic ductal adenocarcinoma (PDAC), a cancer driven principally by mutant K-Ras, the detailed molecular mechanisms by which the Wnt effector β-catenin regulates such tumorigenesis are largely unknown. We have previously demonstrated that β-catenin's differential usage of the Kat3 transcriptional coactivator cyclic AMP-response element binding protein-binding protein (CBP) over its highly homologous coactivator p300 increases self-renewal and suppresses differentiation in other types of cancer. AIM/METHODS:To investigate Wnt-mediated carcinogenesis in PDAC, we have used the specific small molecule CBP/β-catenin antagonist, ICG-001, which our lab identified and has extensively characterized, to examine its effects in human pancreatic cancer cells and in both an orthotopic mouse model and a human patient-derived xenograft (PDX) model of PDAC. RESULTS/CONCLUSION:We report for the first time that K-Ras activation increases the CBP/β-catenin interaction in pancreatic cancer; and that ICG-001 specific antagonism of the CBP/β-catenin interaction sensitizes pancreatic cancer cells and tumors to gemcitabine treatment. These effects were associated with increases in the expression of let-7a microRNA; suppression of K-Ras and survivin; and the elimination of drug-resistant cancer stem/tumor-initiating cells
Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition
We have investigated phase separation, silicon nanocrystal (Si NC) formation and optical properties of Si oxide (SiOx, 0,x,2) films by high-vacuum annealing and dry oxidation. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous–oxide/silane flow ratios. The physical and optical properties of the SiOx films were studied as a result of high-vacuum annealing and thermal oxidation. X-ray photoelectron spectroscopy (XPS) reveals that the as-deposited films have a random-bonding or continuous-random-network structure with different oxidation states. After annealing at temperatures above 1000 °C, the intermediate Si continuum in XPS spectra (referring to the suboxide) split to Si peaks corresponding to SiO2 and elemental Si. This change indicates the phase separation of the SiOx into more stable SiO2and Si clusters. Raman, high-resolution transmission electron microscopy and optical absorption confirmed the phase separation and the formation of Si NCs in the films. The size of Si NCs increases with increasing Si concentration in the films and increasing annealing temperature. Two photoluminescence (PL) bands were observed in the films after annealing. The ultraviolet (UV)-range PL with a peak fixed at 370–380 nm is independent of Si concentration and annealing temperature, which is a characteristic of defect states. Strong PL in red range shows redshifts from ~600 to 900 nm with increasing Si concentration and annealing temperature, which supports the quantum confinement model. After oxidation of the high-temperature annealed films, the UV PL was almost quenched while the red PL shows continuous blueshifts with increasing oxidation time. The different oxidation behaviors further relate the UV PL to the defect states and the red PL to the recombination of quantum-confined excitions
Spin Manipulation by Creation of Single-Molecule Radical Cations
All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising
only C, H, and O atoms, is investigated on a Au(111) substrate using scanning
tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are
switched to a number of states, three of which carry a localized spin as
evidenced by conductance spectroscopy in high magnetic fields. The spin of a
single molecule may be reversibly switched on and off without affecting its
neighbors. We suggest that ReA on Au is readily converted to a radical by the
abstraction of an electron.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let
- …