722 research outputs found

    The stability of a filament of a viscoelastic fluid

    Get PDF
    Hydrodynamic stability of viscoelastic fluid filament

    Combined antiproliferative activity of imatinib mesylate (STI-571) with radiation or cisplatin in vitro

    No full text
    Little is known about the interaction of novel anticancer drugs with other treatment modalities. The aim of this study was to examine the effect of combining imatinib mesylate (STI-571) with radiation or cisplatin on the survival of two human solid tumor cell lines – SKNMC cells derived from Ewing sarcoma and breast cancer MCF-7 cells. Methods: Cell proliferation was determined using the sulphorodamine B cytotoxicity assay. Cell cycle analysis was performed with flow cytometry. Apoptosis was determined using a commercial cell death ELISA plus kit. Phosphorylated AKT, which has been suggested to be involved in radiation resistance, was detected by Western blot analysis. Results: Exposure of SKNMC cells to STI-571 resulted in a dose-dependent antiproliferative effect and a decrease in phosphorylated AKT expression. There was no evidence of apoptosis. The combination of STI-571 with radiation or cisplatin had an additive antiproliferative effect in SKNMC cells (60% reduction in cell number). A similar effect was observed in human MCF-7 breast cancer cells. Conclusion: STI-571 improves the outcome of cisplatin or irradiation treatment in vitro. AKT pathway may play a role in the additive effect of STI-571 and irradiation.Цель: оценить антипролиферативный эффект иматиниба (STI-571) в комбинации с облучением или цисплатиной по отношению к двум клеточным линиям – клеткам линии SKNMC, полученным из саркомы Эвинга, и клеткам рака молочной железы человека линии MCF-7. Методы: для оценки пролиферации клеток применяли метод анализа цитотоксичности с использованием сульфородамина B. Для анализа распределения клеток по фазам клеточного цикла применяли метод проточной цитометрии, апоптоза – с применением коммерческого набора для проведения ИФА. Уровень фосфорилированной киназы АКТ, предположительно связанной с радиорезистентностью, определяли методом Вестерн-блот анализа. Результаты: инкубация клеток SKNMC STI-571 приводила к дозозависимому антипролиферативному эффекту и снижению фосфорилирования AKT, но не апоптозу клеток. Комбинированное применение STI-571 и обления или цисплатины оказывало дополнительное антипролиферативное воздействие на клетки линии SKNMC (60% уменьшения количества клеток). Аналогичные эффекты отмечали на клетках линии MCF-7. Выводы: обработка опухолевых клеток STI-571 усиливает эффект обления и цисплатины in, причем таковой может быть опосредован сигнальным каскадом AK

    The effect of cold acclimation on active ion transport in cricket ionoregulatory tissues.

    Get PDF
    Cold-acclimated insects defend ion and water transport function during cold exposure. We hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and rectum are likely targets for such transport modifications, and recent transcriptomic studies indicate shifts in Na+-K+ ATPase (NKA) and V-ATPase expression in these tissues following cold acclimation. Here we quantify the effect of cold acclimation (one week at 12 °C) on active transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We compared primary urine production of warm- and cold-acclimated crickets in excised Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25 °C. We then compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21 °C or 6 °C, and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, rather than enhancement of active transport in the Malpighian tubules allows crickets to maintain hemolymph water balance during cold exposure, and increased Malpighian tubule NKA activity may help to defend and/or re-establish ion homeostasis

    Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays

    Get PDF
    BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials

    Inevitable Evolutionary Temporal Elements in Neural Processing: A Study Based on Evolutionary Simulations

    Get PDF
    Recent studies have suggested that some neural computational mechanisms are based on the fine temporal structure of spiking activity. However, less effort has been devoted to investigating the evolutionary aspects of such mechanisms. In this paper we explore the issue of temporal neural computation from an evolutionary point of view, using a genetic simulation of the evolutionary development of neural systems. We evolve neural systems in an environment with selective pressure based on mate finding, and examine the temporal aspects of the evolved systems. In repeating evolutionary sessions, there was a significant increase during evolution in the mutual information between the evolved agent's temporal neural representation and the external environment. In ten different simulated evolutionary sessions, there was an increased effect of time -related neural ablations on the agents' fitness. These results suggest that in some fitness landscapes the emergence of temporal elements in neural computation is almost inevitable. Future research using similar evolutionary simulations may shed new light on various biological mechanisms

    Structure of GrlR and the Implication of Its EDED Motif in Mediating the Regulation of Type III Secretion System in EHEC

    Get PDF
    Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 Å resolution. It consists of a typical β-barrel fold with eight β-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two β-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA–GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function

    Gene-Gene Interactions Lead to Higher Risk for Development of Type 2 Diabetes in an Ashkenazi Jewish Population

    Get PDF
    Evidence has accumulated that multiple genetic and environmental factors play important roles in determining susceptibility to type 2 diabetes (T2D). Although variants from candidate genes have become prime targets for genetic analysis, few studies have considered their interplay. Our goal was to evaluate interactions among SNPs within genes frequently identified as associated with T2D.Logistic regression was used to study interactions among 4 SNPs, one each from HNF4A[rs1884613], TCF7L2[rs12255372], WFS1[rs10010131], and KCNJ11[rs5219] in a case-control Ashkenazi sample of 974 diabetic subjects and 896 controls. Nonparametric multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) were used to confirm findings from the logistic regression analysis. HNF4A and WFS1 SNPs were associated with T2D in logistic regression analyses [P<0.0001, P<0.0002, respectively]. Interaction between these SNPs were also strong using parametric or nonparametric methods: the unadjusted odds of being affected with T2D was 3 times greater in subjects with the HNF4A and WFS1 risk alleles than those without either (95% CI = [1.7-5.3]; P<or=0.0001). Although the univariate association between the TCF7L2 SNP and T2D was relatively modest [P = 0.02], when paired with the HNF4A SNP, the OR for subjects with risk alleles in both SNPs was 2.4 [95% CI = 1.7-3.4; P<or=0.0001]. The KCNJ11 variant reached significance only when paired with either the HNF4A or WFSI SNPs: unadjusted ORs were 2.0 [95% CI = 1.4-2.8; P<or=0.0001] and 2.3 [95% CI = 1.2-4.4; P<or=0.0001], respectively. MDR and GMDR results were consistent with the parametric findings.These results provide evidence of strong independent associations between T2D and SNPs in HNF4A and WFS1 and their interaction in our Ashkenazi sample. We also observed an interaction in the nonparametric analysis between the HNF4A and KCNJ11 SNPs (P<or=0.001), demonstrating that an independently non-significant variant may interact with another variant resulting in an increased disease risk

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells
    corecore