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Abstract 26 

 27 

Cold-acclimated insects defend ion and water transport function during cold exposure. We 28 

hypothesized that this is achieved via enhanced active transport. The Malpighian tubules and 29 

rectum are likely targets for such transport modifications, and recent transcriptomic studies 30 

indicate shifts in Na+-K+ ATPase (NKA) and V-ATPase expression in these tissues following 31 

cold acclimation. Here we quantify the effect of cold acclimation (one week at 12°C) on active 32 

transport in the ionoregulatory organs of adult Gryllus pennsylvanicus field crickets. We 33 

compared primary urine production of warm- and cold-acclimated crickets in excised 34 

Malpighian tubules via Ramsay assay at a range of temperatures between 4 and 25°C. We then 35 

compared NKA and V-ATPase activities in Malpighian tubule and rectal homogenates from 36 

warm- and cold-acclimated crickets via NADH-linked photometric assays. Malpighian tubules 37 

of cold-acclimated crickets excreted fluid at lower rates at all temperatures compared to warm-38 

acclimated crickets. This reduction in Malpighian tubule excretion rates may be attributed to 39 

increased NKA activity that we observed for cold-acclimated crickets, but V-ATPase activity 40 

was unchanged. Cold acclimation had no effect on rectal NKA activity at either 21°C or 6°C, 41 

and did not modify rectal V-ATPase activity. Our results suggest that an overall reduction, 42 

rather than enhancement of active transport in the Malpighian tubules allows crickets to 43 

maintain hemolymph water balance during cold exposure, and increased Malpighian tubule 44 

NKA activity may help to defend and/or re-establish ion homeostasis.   45 

 46 

 47 

Key words: Insect, Gryllus, Malpighian tubules, rectum, sodium pump, proton pump, ion 48 

homeostasis, phenotypic plasticity   49 



1. Introduction 50 

 51 

Chill-susceptible insects lose ion and water homeostasis at temperatures below their critical 52 

thermal minimum (the CTmin). This loss of homeostasis progresses over hours to days and 53 

appears to be driven by gradual migration of Na+ down a concentration gradient from the 54 

hemolymph to the gut lumen (Coello Alvarado et al., 2015; MacMillan and Sinclair, 2011b; 55 

Overgaard and MacMillan, 2017). Water follows the migration of Na+, leading to decreased 56 

hemolymph volume and consequent increase in the concentration of hemolymph K+ (in addition 57 

to Mg2+ and Ca2+) (Coello Alvarado et al., 2015; Des Marteaux and Sinclair, 2016; Koštál et 58 

al., 2006; MacMillan et al., 2015a; MacMillan and Sinclair, 2011b). This ionic imbalance 59 

increases the time required for insects to recover from chill coma (Findsen et al., 2013; Koštál 60 

et al., 2007; MacMillan et al., 2014; MacMillan et al., 2012), and likely contributes to the 61 

accumulation of chronic chilling injuries (Findsen et al., 2014; Koštál et al., 2006; Lee, 2010; 62 

MacMillan et al., 2015b). Defense of water and ion homeostasis during cold exposure is 63 

improved with prior mild chilling or cold acclimation (Coello Alvarado et al., 2015; Koštál et 64 

al., 2006; MacMillan et al., 2015a), but the mechanisms underlying this plasticity are not well 65 

understood.  66 

 67 

Insects maintain water and ion balance via the Malpighian tubules (which excrete primary 68 

urine) and hindgut (across which selective reabsorption of water and ions occurs; O'Donnell 69 

and Simpson, 2008; Phillips et al., 1988). Although the primary urine is isosmotic to the 70 

hemolymph, excretion by the Malpighian tubules is dependent on ionic gradients established at 71 

the apical cell membrane by active and facilitated cation transporter (Beyenbach, 2003).  72 

Transporters include the Na+-K+-2Cl- cotransporter (NKCC, which imports Na+, K+, and Cl- 73 

across the basolateral cell membrane), carbonic anhydrase (CA, which provides cytosolic 74 

protons), and V-ATPase (which pumps protons to the lumen for future exchange with 75 

intracellular cations; Chintapalli et al., 2013; Coast, 2012; Halberg et al., 2015). Highly 76 

convoluted, mitochondria-dense paracellular channels in the rectal pads form the scalariform 77 

complex, in which membrane-bound Na+-K+ ATPase (NKA) establishes a high extracellular 78 

[Na+]. This Na+ concentration gradient within the rectal epithelium drives migration of water 79 

from the highly-concentrated rectal lumen to the relatively less-concentrated hemolymph (i.e. 80 

against an osmotic gradient overall).  81 

 82 



During cold exposure, active transport of ions across ionoregulatory epithelia is thought to be 83 

exceeded by passive leak of ions down their concentration gradients. Cold-acclimated insects 84 

are therefore expected to defend water and ion homeostasis by reducing epithelial permeability 85 

(to minimize water and ion leak) and/or by enhancing active ion transport at lower temperatures 86 

(MacMillan and Sinclair, 2011a). The latter hypothesis is supported by shifts in the transcription 87 

of genes encoding the ion pumps that drive epithelial transport in cold-acclimated Drosophila 88 

melanogaster (MacMillan et al., 2015c; MacMillan et al., 2016) and fall field crickets [Gryllus 89 

pennsylvanicus (Burmeister), Orthoptera: Gryllidae] (Des Marteaux et al., 2017). Although 90 

cold acclimation increased hindgut NKA mRNA in G. pennsylvanicus, V-ATPase mRNA in 91 

the Malpighian tubules was instead downregulated with cold acclimation. These transcriptional 92 

changes suggest that cold acclimation reduces active transport across the Malpighian tubules 93 

while enhancing active transport across the rectum. 94 

 95 

We hypothesized that cold acclimation: 1) reduces excretion rates by decreasing Malpighian 96 

tubule V-ATPase activity, and 2) increases NKA activity in the rectum (which we expect would 97 

enhance reabsorption of Na+ and water). To test these hypotheses, we compared Malpighian 98 

tubule excretion rates (a proxy for active transport) of warm- and cold-acclimated insects, and 99 

related recent findings of acclimation-attributed transcriptional changes in NKA and V-ATPase 100 

(Des Marteaux et al., 2017) to functional changes in tissue transport via enzyme activity assays 101 

in homogenized Malpighian tubules and recta. For this work we used warm- and cold-102 

acclimated G. pennsylvanicus; an emerging model system for the study of cold tolerance 103 

plasticity and its relation to water and ion homeostasis (Coello Alvarado et al., 2015; Des 104 

Marteaux and Sinclair, 2016; MacMillan and Sinclair, 2011b; MacMillan et al., 2012). 105 

 106 

2. Materials and methods 107 

 108 

2.1 Insect rearing and acclimation 109 

Crickets were reared as described by Des Marteaux and Sinclair (2016). Briefly, crickets were 110 

housed in transparent 60 L plastic containers with stacked cardboard egg cartons for shelter, tap 111 

water, and ad libitum commercial rabbit food (Little Friends Original Rabbit Food, Martin 112 

Mills, Elmira, ON, Canada) and developed under constant summer-like conditions (25°C, 113 

14L:10D photoperiod, 70% RH). Crickets laid eggs in containers of moist vermiculite and 114 

sterile sand which were placed at 4°C to accommodate an obligate three-month diapause 115 



(Rakshpal, 1962) before being returned to 25°C to hatch. We used adult female crickets at 116 

approximately three months post-hatch for all experiments. 117 

 118 

Crickets were isolated in 180 mL transparent cups (Polar Plastics, Summit Food Distributors, 119 

London, ON, Canada) with mesh fabric lids, containing egg carton shelters, rabbit food, and 120 

water. Warm-acclimated crickets remained in summer-like conditions (25°C, 14L:10D) for the 121 

week, while cold-acclimated crickets were placed in a Sanyo MIR 154 incubator (Sanyo 122 

Scientific, Bensenville, Illinois) at 12°C, 10L:14D for one week. This acclimation regime 123 

lowers the CTmin (by 1.7°C), speeds chill coma recovery time 3.5-fold, and reduces the 124 

incidence of both mortality and chilling injury following chronic cold exposure (Des Marteaux 125 

et al., submitted). 126 

 127 

2.2 Dissections 128 

Crickets were pinned through the pronotum and the body cavity was opened by mid-dorsal 129 

incision. The Malpighian tubules were removed as a bundle by detaching the ureter from the 130 

gut with forceps. The rectum was severed from the rest of the gut with microscissors. Both 131 

tissues were immediately placed in droplets of simple Ringer’s solution specific to G. 132 

pennsylvanicus hemolymph: (in mM) 110 Na+, 8.5 K+, 6 Mg2+, 7 Ca2+, 144.5 Cl-, pH 7.6 133 

(derived from Des Marteaux and Sinclair, 2016). Any adhering fat body or tracheae were 134 

removed from organs. For Ramsay assays, individual Malpighian tubules were detached from 135 

the bundle by severing with forceps as close as possible to the ampulla (where multiple tubules 136 

coalesce towards the ureter; Wall et al., 1975).  137 

 138 

For enzyme activity assays, entire Malpighian tubule bundles were blotted on tissue paper, flash 139 

frozen in liquid nitrogen, and stored at -80°C until use. Recta were cut open with microscissors 140 

to empty the lumen of fecal material, blotted on a tissue, and stored on ice for enzyme activity 141 

assays performed on the same day. Each replicate for Malpighian tubule enzyme activity assays 142 

was comprised of entire Malpighian tubule bundles pooled from five crickets. For enzyme 143 

activity assays in the recta, each replicate was comprised of pooled organs from 5-10 crickets 144 

(21°C assays) or 8-11 crickets (6°C assay).  145 

 146 

2.3 Active transport across the Malpighian tubules (Ramsay assay) 147 

The rate of primary urine excretion (a proxy for active transport function) was quantified by 148 

Ramsay assay (Ramsay, 1954), using methodology modified from Rheault and O'Donnell 149 



(2004). Assays were carried out using a custom acrylic enclosure. The top surface of the 150 

enclosure contained four, flat-bottomed wells (3.5 cm diameter, 2.5 cm depth) lined with 151 

Sylgard 184 (Paisley Products of Canada Inc., Scarborough, ON) and filled with paraffin oil. 152 

Well temperature was monitored with type-T thermocouples connected to Picotech TC-08 153 

interface and processed by PicoLog software (Pico Technology, Cambridge, UK). The 154 

enclosure was connected to a refrigerated circulator (Model 1157P, VWR International, 155 

Mississauga, ON, Canada) filled with a 1:1 mixture of ethylene glycol and water.  156 

 157 

Four blocks (5 x 2.5 mm) of Sylgard 184 were affixed to the bottom of each well in the 158 

enclosure, and a shallow incision was made by razorblade medially on the top edge of each 159 

block. A 10 μL droplet of Ringer’s (with 4 mM glucose and 15 mM HEPES added, buffered to 160 

pH 7.6) was added 3 mm from each block and one Malpighian tubule was placed individually 161 

into each droplet. The proximal end of each tubule was pulled from the droplet through the 162 

paraffin oil and ‘cleated’ into the incision on the edge of a block. The region of tubule between 163 

the droplet and block was gently punctured using a dissecting pin to produce an initial bead of 164 

primary urine. This first bead was discarded after 15 min. Each tubule was then allowed to 165 

excrete through this puncture for 2 h and the diameter of each bead and the length of tubule 166 

within the droplet were measured using a microscope with an ocular micrometer. The sum of 167 

the bead diameters (assumed to be spherical) was used to calculate volume (πd3/6) excreted per 168 

hour, and corrected to the length of tubule within the droplet. Malpighian tubule excretion rate 169 

was measured at 24, 16, 12, 8, and 4°C (n = 4, 5, 5, 6, and 2 crickets per treatment, respectively). 170 

The excretion rate for each cricket was the mean of the excretion rates measured from six 171 

individual Malpighian tubules. 172 

 173 

2.4 NKA and V-ATPase activity assays 174 

We measured NKA and V-ATPase activity in homogenates of recta and Malpighian tubules 175 

from warm- and cold-acclimated crickets using an NADH-linked activity assay as described by 176 

Jonusaite et al. (2011) (n = 5-10 per enzyme/organ/acclimation combination). Pooled tissues 177 

were diluted in 400 μL in SEID buffer (in mM: 150 sucrose, 10 EDTA, 50 imidazole, and 2.5 178 

Na+-deoxycholate, pH 7.3) and homogenized on ice for 10 s with a 7 mm attachment on a 179 

Polytron PT 10-35 homogenizer (Kinetica, USA). Homogenates were centrifuged at 10000 × g 180 

for 10 min at 4°C and the supernatant was collected. Supernatants were diluted 5-fold further 181 

with SEID for use in activity assays. A reaction buffer was comprised (in mM) of 47 NaCl, 2.6 182 

MgCl2, 10.5 KCl, 50 imidazole, 0.27 NADH, 2.6 ATP, and 2.1 phosphoenolpyruvate, with 3 183 



U.mL-1 lactate dehydrogenase (E.C. 1.1.1.27) and 3.75 U.mL-1 pyruvate kinase (E.C. 2.7.1.40), 184 

pH 7.5.  185 

 186 

Duplicate wells on a 96-well plate each received 10 μL of dilute supernatant and 200 μL of 187 

either assay buffer, assay buffer with 5 mM ouabain (to inhibit NKA), or assay buffer with 10 188 

mM bafilomycin A1 (to inhibit V-ATPase). NADH absorbance (at 340 nm) of the reaction at 189 

21°C was then measured each minute for 30 min in a Multiskan Spectrum spectrophotometer 190 

and SkanIt Software (v2.2) (Thermo Scientific, Wilmington, DE, USA), simultaneously for all 191 

samples. Total protein concentrations of dilute sample supernatants were quantified by 192 

Bradford assay against albumin standards (Kruger, 1994). Enzyme activities were calculated as 193 

the difference in rates between reactions with and without enzyme inhibitors, corrected for total 194 

protein abundance. 195 

 196 

2.5 Hindgut NKA activity at low temperature 197 

To determine whether cold acclimation alters rectal NKA activity during cold exposure we 198 

quantified NKA activity in homogenized recta from warm- and cold-acclimated crickets at 6°C 199 

using assays modified from MacMillan et al. (2015c). Briefly, recta were diluted in 14 volumes 200 

of homogenization buffer (25 mM imidazole, 10 mM β-mercaptoethanol, 0.2% w/v Na+-201 

deoxycholate, pH 7.5), homogenized with a Polytron PT 10-35, and sonicated with a Virsonic 202 

100 (VirTis, Gardiner, NY, USA). Tissues were homogenized and sonicated each in four, 10 s 203 

bursts followed by 20 s on ice. Homogenates were then centrifuged at 7000 × g for 5 min at 204 

4°C and the supernatant was collected. Aliquots (300 μL) of supernatant were filtered through 205 

a size-exclusion column (a 3 mL syringe barrel plugged with glass wool, containing 3 mL of 206 

Sephadex G50, and equilibrated with homogenization buffer) by centrifuging at 500 × g for 1 207 

min. The total protein concentrations of filtered supernatants were quantified by Bradford assay 208 

against albumin standards. 209 

 210 

We added 10 μL of filtered sample to each of four ultra-micro cuvettes; one pair of cuvettes 211 

then received 350 μL of reaction buffer (30 mM KCl, 156 mM NaCl, 7.8 mM MgCl2, 74 mM 212 

imidazole, pH 7.5), while a second pair of cuvettes received 350 μL of reaction buffer also 213 

containing 1.0 mM ouabain. Phosphoenolpyruvate, NADH, lactate dehydrogenase, and 214 

pyruvate kinase were then added (final reaction concentrations of 4 mM, 300 mM, 20 U.mL-1, 215 

and 20 U.mL-1, respectively). Reactions were initiated by adding 40 μL of 50 mM ATP in 216 

reaction buffer.  217 



 218 

NADH absorbance of each reaction was recorded five times per minute for 20 min at 21°C or 219 

6°C (n = 6 biological replicates per acclimation) in a Cary 100 Bio spectrophotometer (Varian, 220 

Palo Alto, CA, USA) using WinUV Thermal Application software (v3.0, Agilent 221 

Technologies). Temperature was maintained with a Cary Temperature Controller (Varian, Palo 222 

Alto, CA, USA). To monitor temperature, a type-T thermocouple connected to a TC-08 223 

interface was placed in a blank microvolume cuvette containing water. Enzyme activities were 224 

calculated as the difference in rates between reactions with and without ouabain, corrected for 225 

total protein abundance. 226 

 227 

2.6 Data analyses 228 

We compared the Malpighian tubule excretion rates (Ramsay assays) of warm- and cold-229 

acclimated crickets by two-way ANOVA. Enzyme activities of warm- and cold-acclimated 230 

crickets were compared by t-tests (or Welch’s t-tests when variance differed between 231 

acclimation treatments). Values reported in the text are means ± s.e.m. All statistical analyses 232 

were performed in R (v3.3.3, R Development Core Team, 2017). 233 

 234 

3. Results 235 

 236 

3.1 Active transport across the Malpighian tubules 237 

The rate of fluid excretion by the Malpighian tubules decreased with temperature (F1,40 = 102, 238 

P < 0.001). The Q10s of secretion rate for warm- and cold-acclimated tubules were 2.2 and 1.9, 239 

respectively (calculated between 15.4°C and 24.8°C). Rates of fluid excretion by cold-240 

acclimated crickets were approximately 35% slower compared to warm-acclimated crickets 241 

based on a linear model (F1,40 = 20.5, P < 0.001; Fig. 1). We observed no significant interaction 242 

between temperature and acclimation (F1,40 = 0.046, P > 0.8). 243 

 244 

3.2 Enzyme activities in the Malpighian tubules  245 

The Malpighian tubules of cold-acclimated crickets had higher NKA activity relative to warm-246 

acclimated crickets at 21°C (t15 = 2.19, P = 0.045; Fig. 2a). We did not observe a decrease in 247 

Malpighian tubule V-ATPase activity with cold acclimation (t9 = 1.21, P = 0.26). Total protein 248 

abundance did not differ between warm- and cold-acclimated Malpighian tubules (t24 = 0.47, P 249 

= 0.64).   250 

 251 



3.3 Enzyme activities in the rectum 252 

NKA activity in homogenized recta was unaffected by cold acclimation at 21°C (t15 = 0.78, P 253 

= 0.45; Fig. 2b). Rectal NKA activity at 6°C was low (0.0094 ± 0.0026 μmol/mg.min and 254 

0.0070 ± 0.0020 μmol/mg.min for warm- and cold-acclimated crickets, respectively) and did 255 

not differ between acclimations (t9.4 = 0.74, P = 0.48). Similarly, V-ATPase activity was 256 

equivalent in the recta of warm- and cold-acclimated crickets (t17 = 1.45, P = 0.16; Fig. 2b). 257 

 258 

4. Discussion 259 

 260 

We hypothesized that cold-acclimated insects should defend hemolymph volume by slowing 261 

fluid excretion rates of Malpighian tubules, and that this would be driven by a reduction in V-262 

ATPase activity. Cold acclimation may have modified active transport across the Malpighian 263 

tubules, manifesting as a reduction in fluid excretion rate at both low and optimal temperatures. 264 

However, lower rates of fluid excretion were not related to modified V-ATPase activity, rather 265 

these slowed rates corresponded with an increase in NKA activity. Although we expected cold 266 

acclimation to increase rectal NKA activity (a means of enhancing water and ion reabsorption), 267 

we observed no such change at either 6°C or 21°C.  268 

 269 

Cold acclimation reduces fluid excretion rates of the Malpighian tubules  270 

Fluid excretion by the Malpighian tubules is driven by active ion transporters, most of which 271 

are temperature-sensitive (Dietz et al., 2001; Galarza-Muñoz et al., 2011; O'Donnell and 272 

Simpson, 2008; Somero, 2004). MacMillan and Sinclair (2011a) hypothesized that cold 273 

acclimation modifies active ion transport such that ion pumping rates are maintained at lower 274 

temperatures compared to warm-acclimated insects; however, we show that the Malpighian 275 

tubules of cold-acclimated crickets excrete fluid more slowly across a range of temperatures. 276 

In Eurosta solidaginis larvae, seasonal acclimatization (between September and December) 277 

also corresponds with a reduction in the rate of Malpighian tubule transport (Yi and Lee, 2005). 278 

By reducing active transport across the Malpighian tubules, cold-acclimated orthopterans may 279 

retain hemolymph volume (i.e. mitigate leak of water) during cold exposure. However, this 280 

mechanism may not be conserved among insect lineages; in D. melanogaster, the Malpighian 281 

tubules of cold-acclimated individuals instead excrete fluid more rapidly than warm-acclimated 282 

individuals (Yerushalmi et al., 2017), and knockdown of diuretic capa peptides also slows chill 283 

coma recovery (Terhzaz et al., 2015). While we expect that active transport modification is 284 



likely to underlie the changes in fluid excretion, it is also possible that cold acclimation reduces 285 

Malpighian tubule fluid excretion by reducing epithelial permeability (e.g. by modifying cell 286 

junctions or the expression/localization of aquaporins) (Spring et al., 2009). 287 

 288 

Proton pumping drives net cation transport across the Malpighian tubules, and V-ATPase is 289 

central to this process (Chintapalli et al., 2013; Klein, 1992). Although V-ATPase mRNA 290 

abundance is reduced in the Malpighian tubules of cold-acclimated crickets (Des Marteaux et 291 

al., 2017), cold acclimation did not reduce the activity of this enzyme in the present study. 292 

Decreased fluid excretion rates may therefore involve modification of other enzymes (e.g. NKA 293 

or perhaps CA). Carbonic anhydrase mRNA abundance is reduced in the Malpighian tubules 294 

of cold-acclimated crickets (Des Marteaux et al., 2017), suggesting that CA is a candidate for 295 

this modification. Carbonic anhydrase in the Malpighian tubules provides protons for transport 296 

by V-ATPase and potentially the counterions (H+ and HCO3
-) for import of hemolymph Na+ 297 

and Cl- (Beyenbach and Piermarini, 2011; Chintapalli et al., 2013; Wessing et al., 1997). 298 

Although we did not measure CA activity in warm- and cold-acclimated crickets, decreased 299 

activity of this enzyme could drive decreased primary urine excretion in cold-acclimated 300 

crickets. Because CA is a thermally-insensitive enzyme (Feller and Gerday, 1997), cold 301 

exposure alone would not be expected to reduce activity.  302 

 303 

Cold acclimation increased Malpighian tubule NKA activity, and this should have multiple 304 

effects on water and ion balance in the hemolymph. NKA activity in the Malpighian tubules 305 

appears to be antidiuretic; in Rhodnius, ouabain (an inhibitor of NKA) stimulates transport of 306 

Na+ and fluid to the Malpighian tubule lumen (Maddrell and Overton, 1988), and the diuretic 307 

hormone 5-HT inhibits NKA activity (Grieco and Lopes, 1997). It is proposed that NKA 308 

inhibition leads to the accumulation of intracellular Na+, favoring transport of Na+ and water to 309 

the lumen (Caruso-Neves and Lopes, 2000). Increased NKA activity in the Malpighian tubules 310 

of cold-acclimated crickets could therefore account in part for the decreased primary urine 311 

production rate. NKA activity in the Malpighian tubules also regulates selectivity of excreted 312 

cations. For example, inhibition of NKA by ouabain increases the Na+:K+ ratio of the primary 313 

urine in Acheta domesticus crickets (Coast, 2012). Under optimal temperatures (e.g. 21°C), 314 

increased Malpighian tubule NKA in cold-acclimated crickets may thereby hasten the removal 315 

of K+ and re-establish low hemolymph [K+] during recovery from cold exposure (Beyenbach, 316 

2003). As we would predict, chill-tolerant Drosophila spp. Also excrete primary urine with 317 

lower Na+:K+ ratios compared to chill-susceptible species (MacMillan et al., 2015a). Although 318 



we did not measure Malpighian tubule enzyme activities at low temperatures, enhanced NKA 319 

activity during cold exposure could prevent or delay imbalance of hemolymph Na+, water, and 320 

K+ during chill coma (both reducing the CCRT and the energetic costs of re-establishing ionic 321 

and osmotic gradients; MacMillan et al., 2012).  322 

 323 

Rectal NKA and V-ATPase activities are unchanged by cold acclimation 324 

Because cold exposure results in leak of Na+ and water towards the gut, an obvious hypothesis 325 

is that cold acclimation enhances the activity of rectal pad NKA to mitigate this leak. Increased 326 

rectal NKA activity at higher temperatures (i.e. during rewarming) should also speed up re-327 

establishment of Na+ and water balance thereby reducing chill coma recovery time. An increase 328 

in hindgut NKA transcript abundance for cold-acclimated G. pennsylvanicus (Des Marteaux et 329 

al., 2017) certainly supports this hypothesis. However, we found no evidence of increased rectal 330 

NKA activity at 6°C or 21°C. Similarly, although rectal V-ATPase transcript abundance 331 

decreases in cold-acclimated G. pennsylvanicus (Des Marteaux et al., 2017), V-ATPase activity 332 

in rectal homogenates was unchanged by cold acclimation in the present study. The significance 333 

of altered NKA and V-ATPase transcript abundance in cold-acclimated G. pennsylvanicus 334 

therefore remains in question, and further illustrates the point that mRNA abundance does not 335 

necessarily reflect increased enzyme abundance (Gygi et al., 1999).  336 

 337 

Other enzymes controlling reabsorption across the rectum could be modified by cold 338 

acclimation, however many remain to be identified (Chintapalli et al., 2013; O'Donnell and 339 

Simpson, 2008). This poses a challenge for predicting how modification of hindgut water or 340 

ion transporters may affect transport in the cold. First, active transport across the rectal pads of 341 

warm- and cold-acclimated insects should be compared (e.g. via Ussing chamber; Ussing and 342 

Zerahn, 1951; Clarke, 2009 or everted-sac technique (Barthe et al., 1998; Lechleitner et al., 343 

1989) to determine whether rectal transport is modified by cold acclimation overall. The 344 

specific enzymatic targets of cold acclimation (and their relative contribution to altered 345 

transport function) could then be determined by comparing active transport rates across the 346 

rectum with and without selective enzyme inhibitors (Bertram et al., 1991; Clarke, 2009; 347 

Hanrahan et al., 1984). 348 

 349 

An organ-specific role for NKA in cold acclimation? 350 

Acquired cold tolerance is associated with a reduction in whole-body NKA activity in D. 351 

melanogaster (MacMillan et al., 2015c) and goldenrod gall fly larvae (Eurosta solidaginis) 352 



(McMullen and Storey, 2008). However, the functional significance of modified active 353 

transport should depend on the specific enzyme and organ in which that modification occurs. 354 

In the Malpighian tubules of cold-acclimated G. pennsylvanicus we instead observed increased 355 

NKA activity, and this should prevent loss of hemolymph volume during cold exposure. It is 356 

possible that cold acclimation modifies transport function differently in dipterans than in 357 

orthopterans, but we suspect that this contrast is because NKA is ubiquitously expressed and 358 

comparisons of whole-body NKA activity are not informative for predicting how cold 359 

acclimation affects transport function in specific ionoregulatory organs.  360 

 361 

Changes in total protein abundance could not explain increased Malpighian tubule NKA 362 

activity, but we did not measure NKA abundance specifically. It is also possible that the 363 

abundance of NKA increases proportionally with decreased abundance of other enzymes (e.g. 364 

V-ATPase) such that total protein abundance is unaffected. Alternately, cold-acclimated 365 

crickets could express NKA isozymes with different activities or thermal sensitivities (Blanco, 366 

2005; Galarza-Muñoz et al., 2011). NKA activity could also be altered by changes in membrane 367 

fluidity {Koštál, 1998 #516}, post-transcriptional modifications (e.g. via RNA editing; Colina 368 

et al., 2010) or by post-translational modifications (e.g. phosphorylation or dephosphorylation; 369 

McMullen and Storey, 2008; Poulsen et al., 2010; Seo and Lee, 2004). Kinase-mediated 370 

phosphorylation is already proposed to reduce NKA activity in overwintering goldenrod gall 371 

flies (McMullen and Storey, 2008). However, we do not know the extent to which these 372 

modifications persist under present assay conditions. Enzyme activity assays for homogenates 373 

are also unlikely to capture differences based on modified recruitment of enzymes to the 374 

membrane or modified cytoskeletal structure (Khurana, 2000; Lai and Jan, 2006). A first step 375 

may be to determine the effect of cold acclimation on the phosphorylation state of target ion 376 

transporters (Pavlides et al., 2011). 377 

 378 

5. Conclusions 379 

 380 

Cold acclimation reduces fluid excretion rates of Malpighian tubules, suggesting an overall 381 

reduction in active transport across the insect Malpighian tubules. Decreased excretion rates 382 

were not attributed to a reduction in V-ATPase activity (as predicted by transcriptomic 383 

changes), but may in part result from increased Malpighian tubule NKA activity. Rectal NKA 384 

activity was unchanged by cold acclimation (also contrary to observations of increased hindgut 385 

NKA transcript abundance). Modification of Malpighian tubule transport is therefore an 386 



important aspect of acquired cold tolerance; by reducing primary urine production, cold-387 

acclimated crickets should mitigate loss of hemolymph volume at low temperatures. Upon 388 

rewarming, enhanced NKA activity should allow cold-acclimated insects to re-establish ion 389 

balance more rapidly by preferentially retaining hemolymph Na+ content and excreting 390 

hemolymph K+.  391 
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Figure captions 541 

 542 

Figure 1. Effect of cold acclimation on fluid excretion rate by the Malpighian tubules in 543 

adult G. pennsylvanicus crickets. Fluid excretion was measured on isolated tubules using the 544 

Ramsay assay (n = 12 to 36 tubules per temperature-acclimation combination). The effects of 545 

assay temperature and acclimation on excretion rate were both significant according to two-546 

way ANOVA (see text for statistics). Trend lines represent linear models for each acclimation 547 

treatment. 548 

 549 

Figure 2. Effect of cold acclimation on the activity of Na+-K+ ATPase (NKA) and V-550 

ATPase in homogenized Malpighian tubules (A) and recta (B) of G. pennsylvanicus 551 

crickets. Activity rates were measured at 21°C via NADH-linked assays, and given as moles 552 

of ADP converted per hour (corrected for protein concentration in homogenates). Replication 553 

for pooled warm- and cold-acclimated Malpighian tubule homogenates was 10 and 7 (NKA) 554 

and 6 and 5 (V-ATPase), respectively. Replication for pooled warm- and cold-acclimated rectal 555 

homogenates was 8 and 9 (NKA) and 9 and 10 (V-ATPase), respectively. Significant 556 

differences in the activity of a given enzyme between warm- and cold-acclimated tissues is 557 

represented by an asterisk. 558 
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