503 research outputs found

    Do published guidelines for evaluation of Irritable Bowel Syndrome reflect practice?

    Get PDF
    BACKGROUND: The only US guidelines listed in the National Guideline Warehouse for the diagnosis of Irritable Bowel Syndrome (IBS) are the expert opinion guidelines published by The American Gastroenterology Association. Although the listed target audience of these guidelines includes family physicians and general internists, the care recommended in the guidelines has not been compared to actual primary care practice. This study was designed to compare expert opinion guidelines with the actual primary care provided and to assess outcomes in the 3 years following the IBS diagnosis. METHODS: This is a retrospective medical record review study using a random sample of incident IBS cases from all Olmsted County, Minnesota providers diagnosed between January 1, 1993 and December 31, 1995. Data was collected on all care and testing provided to the subjects as well as 3-year outcomes related to the IBS diagnosis. RESULTS: Of the 149 IBS patients, 99 were women and the mean age was 47.6 years. No patient had all of the diagnostic tests recommended in the guidelines. 42% had the basic blood tests of CBC and a chemistry panel. Sedimentation rate (2%) and serum thyroxine level (3%) were uncommon. Colon imaging studies were done in 41% including 74% of those over the age of 50. In the 3 years following the diagnosis, only one person had a change in diagnosis and no diagnoses of gastro-intestinal malignancies were made in the cohort. CONCLUSIONS: Primary care practice based diagnostic evaluations for IBS differ significantly from the specialty expert opinion-based guidelines. Implementation of the specialty guidelines in primary care practice would increase utilization with apparent limited improvement in diagnostic outcomes

    Asthma and Risk of Non-Respiratory Tract Infection: A Population-Based Case-Control Study

    Get PDF
    OBJECTIVES: Asthmatics have increased risks of airway-related infections. Little is known about whether this is true for non-airway-related serious infections such as Escherichia coli bloodstream infection (BSI). We assessed whether asthma is associated with a risk of developing community-acquired E coli BSI. DESIGN: The study was designed as a population-based retrospective case-control study. SETTING: This population-based study was conducted in Olmsted County, Minnesota. PARTICIPANTS: The study included 259 all eligible community-acquired E coli BSI cases in Olmsted County, MN between 1998 and 2007 and 259 birthday-matched, gender-matched and residency-matched controls. PRIMARY AND SECONDARY OUTCOME MEASURES: Only community-acquired E coli BSI cases as the primary outcome was included. Asthma status as an exposure was ascertained by predetermined criteria. An adjusted OR and 95% CI for the association between asthma and risk of community-acquired E coli BSI was calculated using conditional logistic regression. RESULTS: Of 259 eligible cases, 179 (69%) were women and mean age was 61±22 years. Of the 259 cases 37 (14%) and 16 (6%) of 259 controls had a prior history of asthma (adjusted OR 2.74; 95% CI 1.11 to 6.76; p=0.029). The population attributable risk of asthma for community-acquired E coli BSI was 9%. Although not statistically significant, there was a borderline association between having a history of food allergy and increased risk of community-acquired E coli BSI (6% vs 2%; adjusted OR 3.51; 95% CI 0.94 to 13.11; p=0.062). CONCLUSIONS: Based on the findings of the current population-based, case-control investigation, a history of asthma may be associated with risk of community-acquired E coli BSI. The impact of asthma on risk of microbial infections may go beyond airways

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    Exact Relativistic Two-Body Motion in Lineal Gravity

    Get PDF
    We consider the N-body problem in (1+1) dimensional lineal gravity. For 2 point masses (N=2) we obtain an exact solution for the relativistic motion. In the equal mass case we obtain an explicit expression for their proper separation as a function of their mutual proper time. Our solution gives the exact Hamiltonian to infinite order in the gravitational coupling constant.Comment: latex, 11 pages, 2 figures, final version to appear in Phys. Rev. Let

    Statistical Mechanics of Relativistic One-Dimensional Self-Gravitating Systems

    Get PDF
    We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The system consists of NN-particles coupled to lineal gravity and can be considered as a model of NN relativistically interacting sheets of uniform mass. The partition function and one-particle distitrubion functions are computed to leading order in 1/c1/c where cc is the speed of light; as c→∞c\to\infty results for the non-relativistic one-dimensional self-gravitating system are recovered. We find that relativistic effects generally cause both position and momentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is smaller than its non-relativistic counterpart at the same fixed energy. We consider the large-N limit of our results and compare this to the non-relativistic case.Comment: latex, 60 pages, 22 figure

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η≃0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Exact self-gravitating N-body motion in the CGHS model

    Get PDF
    In the asymptotically flat two-dimensional dilaton gravity, we present an N-body particle action which has a dilaton coupled mass term for the exact solubility. This gives nonperturbative exact solutions for the N-body self-gravitating system, so the infalling particles form a black hole and their trajectories are exactly described. In our two-dimensional case, the critical mass for the formation of black holes does not exist, so even a single particle forms a black hole, which means that we can treat many black holes. The infalling particles give additional time-like singularities in addition to the space-like black hole singularity. However, the latter singularities can be properly cloaked by the future horizons within some conditions.Comment: 13 pages, no figure

    Using the ecology model to describe the impact of asthma on patterns of health care

    Get PDF
    BACKGROUND: Asthma changes both the volume and patterns of healthcare of affected people. Most studies of asthma health care utilization have been done in selected insured populations or in a single site such as the emergency department. Asthma is an ambulatory sensitive care condition making it important to understand the relationship between care in all sites across the health service spectrum. Asthma is also more common in people with fewer economic resources making it important to include people across all types of insurance and no insurance categories. The ecology of medical care model may provide a useful framework to describe the use of health services in people with asthma compared to those without asthma and identify subgroups with apparent gaps in care. METHODS: This is a case-control study using the 1999 U.S. Medical Expenditure Panel Survey. Cases are school-aged children (6 to 17 years) and young adults (18 to 44 years) with self-reported asthma. Controls are from the same age groups who have no self-reported asthma. Descriptive analyses and risk ratios are placed within the ecology of medical care model and used to describe and compare the healthcare contact of cases and controls across multiple settings. RESULTS: In 1999, the presence of asthma significantly increased the likelihood of an ambulatory care visit by 20 to 30% and more than doubled the likelihood of making one or more visits to the emergency department (ED). Yet, 18.8% of children and 14.5% of adults with asthma (over a million Americans) had no ambulatory care visits for asthma. About one in 20 to 35 people with asthma (5.2% of children and 3.6% of adults) were seen in the ED or hospital but had no prior or follow-up ambulatory care visits. These Americans were more likely to be uninsured, have no usual source of care and live in metropolitan areas. CONCLUSION: The ecology model confirmed that having asthma changes the likelihood and pattern of care for Americans. More importantly, the ecology model identified a subgroup with asthma who sought only emergent or hospital services

    A dynamical classification of the range of pair interactions

    Full text link
    We formalize a classification of pair interactions based on the convergence properties of the {\it forces} acting on particles as a function of system size. We do so by considering the behavior of the probability distribution function (PDF) P(F) of the force field F in a particle distribution in the limit that the size of the system is taken to infinity at constant particle density, i.e., in the "usual" thermodynamic limit. For a pair interaction potential V(r) with V(r) \rightarrow \infty) \sim 1/r^a defining a {\it bounded} pair force, we show that P(F) converges continuously to a well-defined and rapidly decreasing PDF if and only if the {\it pair force} is absolutely integrable, i.e., for a > d-1, where d is the spatial dimension. We refer to this case as {\it dynamically short-range}, because the dominant contribution to the force on a typical particle in this limit arises from particles in a finite neighborhood around it. For the {\it dynamically long-range} case, i.e., a \leq d-1, on the other hand, the dominant contribution to the force comes from the mean field due to the bulk, which becomes undefined in this limit. We discuss also how, for a \leq d-1 (and notably, for the case of gravity, a=d-2) P(F) may, in some cases, be defined in a weaker sense. This involves a regularization of the force summation which is generalization of the procedure employed to define gravitational forces in an infinite static homogeneous universe. We explain that the relevant classification in this context is, however, that which divides pair forces with a > d-2 (or a < d-2), for which the PDF of the {\it difference in forces} is defined (or not defined) in the infinite system limit, without any regularization. In the former case dynamics can, as for the (marginal) case of gravity, be defined consistently in an infinite uniform system.Comment: 12 pages, 1 figure; significantly shortened and focussed, additional references, version to appear in J. Stat. Phy
    • 

    corecore