23 research outputs found

    Functional Modeling Identifies Paralogous Solanesyl-diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids

    Get PDF
    Background: Plastid isoforms of solanesyl-diphosphate synthase catalyze the elongation of the prenyl side chain of plastoquinone-9. Results: Corresponding mutants display lower levels of plastoquinone-9 and plastochromanol-8 and display intact levels of vitamin E. Conclusion: Plastochromanol-8 originates from a subfraction of non-photoactive plastoquinol-9 and is not essential for seed longevity. Significance: Viable plastoquinone-9 mutants are invaluable tools for understanding plastid metabolism

    The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch. Includes supplementary files

    Functional Modeling Identifies Paralogous Solanesyl-diphosphate Synthases That Assemble the Side Chain of Plastoquinone-9 in Plastids

    Get PDF
    Background: Plastid isoforms of solanesyl-diphosphate synthase catalyze the elongation of the prenyl side chain of plastoquinone-9. Results: Corresponding mutants display lower levels of plastoquinone-9 and plastochromanol-8 and display intact levels of vitamin E. Conclusion: Plastochromanol-8 originates from a subfraction of non-photoactive plastoquinol-9 and is not essential for seed longevity. Significance: Viable plastoquinone-9 mutants are invaluable tools for understanding plastid metabolism

    Novel genomic locus with atypical G+C content that is required for extracellular polysaccharide production and virulence in Xanthomonas oryzae pv. oryzae

    No full text
    Three exopolysaccharide (EPS)-and virulence-deficient mutants of Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of rice, were isolated by Tn5 mutagenesis. These insertions are not located within the gum gene cluster. A 40-kb cosmid clone that restored EPS production and virulence to all three mutants was isolated, and the three transposon insertions were localized to contiguous 4.3-and 3.5-kb EcoRI fragments that are included in this clone. Sequence data indicate that two of the transposon insertions are in genes that encode a putative sugar nucleotide epimerase and a putative glycosyl transferase, respectively; the third insertion is located between the glycosyl transferase gene and a novel open reading frame (ORF). A 5.5-kb genomic region in which these three ORFs are located has a G+C content of 5-1.7%, quite different from the G+C content of approximately 65.0% that is typical of X. oryzae pv. oryzae. Homologues of this locus have not yet been reported in any other xanthomonad

    The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch. Includes supplementary files

    Genomewide identification of proteins secreted by the Hrp type III protein secretion system of \u3ci\u3ePseudomonas syringae\u3c/i\u3e pv. \u3ci\u3etomato\u3c/i\u3e DC3000

    Get PDF
    The ability of Pseudomonas syringae pv. tomato DC3000 to be pathogenic on plants depends on the Hrp (hypersensitive response and pathogenicity) type III protein secretion system and the effector proteins it translocates into plant cells. Through iterative application of experimental and computational techniques, the DC3000 effector inventory has been substantially enlarged. Five homologs of known avirulence (Avr) proteins and five effector candidates, encoded by genes with putative Hrp promoters and signatures of horizontal acquisition, were demonstrated to be secreted in culture and/or translocated into Arabidopsis in a Hrp-dependent manner. These 10 Hrp-dependent outer proteins (Hops) were designated HopPtoC (Avr- PpiC2 homolog), HopPtoD1 and HopPtoD2 (AvrPphD homologs), HopPtoK (AvrRps4 homolog), HopPtoJ (AvrXv3 homolog), HopPtoE, HopPtoG, HopPtoH, HopPtoI, and HopPtoS1 (an ADP-ribosyltransferase homolog). Analysis of the enlarged collection of proteins traveling the Hrp pathway in P. syringae revealed an export-associated pattern of equivalent solvent-exposed amino acids in the N-terminal five positions, a lack of Asp or Glu residues in the first 12 positions, and amphipathicity in the first 50 positions. These characteristics were used to search the unfinished DC3000 genome, yielding 32 additional candidate effector genes that predicted proteins with Hrp export signals and that also possessed signatures of horizontal acquisition. Among these were genes encoding additional ADPribosyltransferases, a homolog of SrfC (a candidate effector in Salmonella enterica), a catalase, and a glucokinase. One ADP-ribosyltransferase and the SrfC homolog were tested and shown to be secreted in a Hrp-dependent manner. These proteins, designated HopPtoS2 and HopPtoL, respectively, bring the DC3000 Hrp-secreted protein inventory to 22

    MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development

    Get PDF
    As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plantspecific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein–protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%–10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1.MSH1depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors
    corecore