University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Center for Plant Science Innovation

Plant Science Innovation, Center for

2014

The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in *Arabidopsis*

Anna Block University of Nebraska-Lincoln, ablock2@unl.edu

Joshua R. Widhalm *Purdue University,* jwidhalm@purdue.edu

Abdelhak Fatihi University of Nebraska-Lincoln, abdou.fatihi@unl.edu

Rebecca E. Cahoon University of Nebraska-Lincoln, rcahoon2@unl.edu

Yashitola Wamboldt University of Nebraska - Lincoln, ywamboldt2@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/plantscifacpub Part of the <u>Botany Commons</u>, and the <u>Plant Pathology Commons</u>

Block, Anna; Widhalm, Joshua R.; Fatihi, Abdelhak; Cahoon, Rebecca E.; Wamboldt, Yashitola; Elowsky, Christian; MacKenzie, Sally Ann; Cahoon, Edgar B.; Chapple, Clint; Dudareva, Natalia; and Basset, Gilles J. C., "The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in *Arabidopsis*" (2014). *Faculty Publications from the Center for Plant Science Innovation*. 91. https://digitalcommons.unl.edu/plantscifacpub/91

This Article is brought to you for free and open access by the Plant Science Innovation, Center for at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Faculty Publications from the Center for Plant Science Innovation by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Anna Block, Joshua R. Widhalm, Abdelhak Fatihi, Rebecca E. Cahoon, Yashitola Wamboldt, Christian Elowsky, Sally Ann MacKenzie, Edgar B. Cahoon, Clint Chapple, Natalia Dudareva, and Gilles J. C. Basset

Published in *The Plant Cell* 26 (2014), pp. 1938-1948; doi: http://dx.doi.org/10.1105/tpc.114.125807 Copyright © 2014 American Society of Plant Biologists. Used by permission. Submitted March 27, 2014; revised April 15, 2014; accepted April 24, 2014; published online May 2014.

The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in *Arabidopsis*

Anna Block,¹ Joshua R. Widhalm,² Abdelhak Fatihi,¹ Rebecca E. Cahoon,¹ Yashitola Wamboldt,¹ Christian Elowsky,¹ Sally A. Mackenzie,¹ Edgar B. Cahoon,¹ Clint Chapple,² Natalia Dudareva,² and Gilles J. Basset ¹

1.Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska 68588 2. Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907

Corresponding author - Gilles J. Basset, email gbasset2@unl.edu

Abstract

It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that *Arabidopsis thaliana* uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by *At4g19010* contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers *para*-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the *at4g19010* knockout cannot use *para*-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of *para*-coumarate, can bypass this blockage. Furthermore, a *trans*-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of *trans*-cinnamate into *para*-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the *at4g19010* knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of *para*-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.

Introduction

Ubiquinone (coenzyme Q) is a prenylated benzoquinone that serves as a vital electron and proton carrier in the respiratory chain of mitochondria and some bacteria (Nowicka and Kruk, 2010). It is made up of a redox active benzoquinone ring and a prenyl side chain (Figure 1). In plants as in fungi and vertebrates, it is now established that the synthesis of the prenyl moiety, its conjugation to the benzenoid ring, and the subsequent methylation of the latter on carbon 5 (Figure 1) all take place in mitochondria (Avelange-Macherel and Joyard, 1998; Okada et al., 2004; Ducluzeau et al., 2012).

In contrast, the origin of the benzenoid backbone is not known (Kawamukai, 2009). Indeed, not only have the cognate enzymes yet to be identified, but what is known about the biosynthesis of the ring of ubiquinone in non-plant organisms delineates a puzzling evolutionary pattern. For instance, in *Escherichia coli*, the ring of ubiquinone is made from 4-hydroxybenzoate, which comes from the direct aromatization of chorismate catalyzed by chorismate pyruvate-lyase or UbiC (Figure 1; Nichols and Green, 1992). However, this enzyme appears to be restricted to the eubacterial lineage (Clarke, 2000; Kawamukai, 2009; Pfaff et al., 2014).

The yeast *Saccharomyces cerevisiae* is able to derive the ring of ubiquinone from the folate precursor *para*-aminobenzoate (*p*ABA), which is prenylated and then deaminated (Figure 1; Pierrel et al., 2010). Yeast and other fungi can also make the ring of ubiquinone from 4-hydroxybenzoate, although none of the steps in this alternative pathway are known and the relative contribution of the *p*ABA and 4-hydroxybenzoate branches is difficult to estimate (Law et al., 1971; Marbois et al., 2010). Vertebrates cannot synthesize *p*ABA, but early radiotracer studies have shown that mammals incorporate the ring of phenylalanine and tyrosine into the benzenoid moiety of ubiquinone and that 4-hydroxybenzoate is a likely intermediate (Figure 1; Olson et al., 1963). Since vertebrates are able to convert phenylalanine into tyrosine, these two amino acids most likely belong to a single linear biosynthetic branch leading to 4-hydroxybenzoate (Figure 1; Olson et al., 1963; Clarke, 2000). As is the case for yeast, the vertebrate enzymes involved in the biosynthesis of 4-hydroxybenzoate have not been identified.

Flowering plants a priori do not convert phenylalanine into tyrosine, as they appear to lack phenylalanine-4-hydroxylase (Pribat et al., 2010). However, plants do synthesize *p*ABA (Quinlivan et al., 2003), suggesting that a *p*ABA route toward ubiquinone could operate in the green lineage as it does in fungi (Figure 1). There is also the possibility that plants have evolved the capacity to synthesize the ring of ubiquinone via an entirely different pathway from those of other eukaryotes.

In this study, we show that *Arabidopsis thaliana* derives the ring of ubiquinone from that of phenylalanine and tyrosine via two nonintersecting routes. We focused on the phenylalanine pathway, and combining gene network modeling, isotopic labeling, and reverse genetics identified two enzymes and one transporter involved in the formation of the benzenoid ring of ubiquinone from the metabolism of phenylpropanoids.

Figure 1. The Structure of Ubiquinone and the Metabolic Origin of Its Benzenoid Ring in *E. coli*, Yeast, and Vertebrates. Note that UbiC (chorismate-pyruvate lyase) occurs exclusively in eubacteria and that PAH (phenylalanine-4-hydroxylase) appears to be lacking in angiosperms.

Results

Arabidopsis Derives the Benzenoid Moiety of Ubiquinone from Phenylalanine and Tyrosine, Not from pABA

When axenic cultures of *Arabidopsis* were given identical doses of uniformly ¹³C-labeled phenylalanine (Phe-[¹³C_g]) or tyrosine (Tyr-[¹³C_g)^{:15}N]), ultraperformance liquid chromatography–electrospray ionization–tandem mass spectrometry analysis of the corresponding extracts readily detected the ion pairs characteristic of ubiquinone-[*Ring*-¹³C₆] (Supplemental Figure 1). The isotopic enrichment of the benzoquinone ring was twice as high with Phe-[¹³C₉] as with Tyr-[¹³C₉;¹⁵N] in both shoots and roots (Table 1). Importantly, ¹³C isotopes of ubiquinone heavier than those labeled at the six ring positions were not detected, indicating that only the aromatic moiety of Phe-[¹³C₉] and Tyr-[¹³C₉;¹⁵N] had been incorporated into ubiquinone. Because angiosperms appear to be unable to convert phenylalanine into tyrosine (Pribat et al.,

Table 1. Ubiquinone-[<i>Ring</i> ¹³ C ₆] Levels in <i>Arabidopsi</i>	sis
---	-----

2010), we inferred that the incorporation of these two aromatic amino acids into ubiquinone might occur, unlike in vertebrates, via two independent pathways. In stark contrast with yeast, *Arabidopsis* did not incorporate *p*ABA into ubiquinone (Table 1).

Gene Network Reconstruction Identifies a Functional Link between the Biosynthesis of Ubiquinone and a 4-Coumarate-CoA Ligase-Like in Arabidopsis

Mining the ATTED-II coexpression database (Obayashi et al., 2009) with genes involved in the assembly of the respiratory chain as queries detected gene At4g19010 as a remarkable node interactor (Figure 2A). The cognate 57-kD protein features a conserved domain (cd05904) found in 4-coumarate-CoA ligases, and previous studies confirmed that recombinant At4q19010 displays CoA ligase activity with some hydroxycinnamate derivatives as substrates (Costa et al., 2005; Kienow et al., 2008). Two of At4q19010's strongest interactors, solanesyl-diphosphate synthase3 (SPS3; At2q34630), a COQ1/ IspB ortholog, and ABC transporter1 (ABC1; At4q01660), a COQ8/UbiB ortholog (Figure 2A), encode for enzymes involved in the biosynthesis of ubiquinone (Cardazzo et al., 1998; Ducluzeau et al., 2012; Block et al., 2013). Expanding the network reconstruction to the top 250 genes that coexpress with At4q19010, SPS3, and ABC1 revealed that At4q19010 shares 38% of its interactors with SPS3 and/or ABC1 (Figure 2B). Of those, 65% are shared uniquely with SPS3, 13% uniquely with ABC1, and 22% with both SPS3 and ABC1 (Figure 2B). It thus appears that the function of At4q19010 is intimately connected to the mitochondrial electron and proton transport chain and more specifically to ubiquinone biosynthesis. It should also be noted that At4q19010 displays a Cterminal SerArgLeu tripeptide typifying a peroxisomal targeting signal-1; we will come back to this point later.

At4g19010 Contributes to the Formation of the Ring of Ubiquinone from Phenylalanine, but Not from Tyrosine

Two mutants corresponding to T-DNA insertions located in the first exon (SK_29455) and fifth intron (SALK_043310) of *At4g19010*, respectively, were identified using the T-DNA Express gene mapping tool of the SALK Institute (Figure 3A) and confirmed by DNA genotyping. RT-PCR analyses demonstrated that the insertion in line SK_29455 resulted in a knockdown mutation, while that of line SALK_043310 corresponded to a genuine knockout (Figure 3B). Both T-DNA lines were visually indistinguishable from wild-type plants. However, quantification of ubiquinone showed that its levels correlated with the expression of *At4g19010*; lines SK_29455 and SALK_043310 displaying 21 and 62% decrease in ubiquinone content com-

	Ubiquinone-[<i>Ring</i> ¹³ C ₆], pmole·g ⁻¹ FW					
	Phe-[¹³ C ₉]	Tyr-[¹³ C ₉ ; ¹⁵ N]	<i>p</i> ABA-[¹³ C ₆]			
Shoots	13 ± 2	6 ± 1	n.d.			
Roots	12 ± 21	54 ± 13	n.d.			

Data are means of three biological replicates 6 SE. n.d., not detected; FW, fresh weight.

Figure 2. Gene Functional Network of *At4g19010*. **(A)** Interaction network reconstituted from the top 4.5% elements of the 22,263 expressed loci of the ATTED-II database that coexpress with the respiratory genes *SPS3*, *ABC1*, *COX10*, *COX17*, *COX11*, *COX15*, *CB5-A*, *NAD7*, *MFDX2*, *SURF1*, *OXA1*, and *HCC1*. **(B)** Reconstruction of the top 250 coexpressors of *At4g19010*, *SPS3*, and *ABC1*. The annotated lists of these genes and the correlation ranks of the latter are given in Supplemental Data Set 1.

pared with wild-type plants, respectively (Figure 3C). Similarly, overexpression of *At4g19010* cDNA in two independent *Arabidopsis* transgenic lines resulted in the accumulation of ubiquinone to ~155% of wild-type content (Figure 3C). Furthermore, when Phe-[$^{13}C_9$] was fed to the *at4g19010* knockout, the isotopic enrichment of ubiquinone-[*Ring*- $^{13}C_6$] was half of that found in the wild-type control (Figure 3D). On the other hand, no statistically significant difference in ^{13}C isotope incorporation was observed between knockout and wild-type plants when Tyr-[$^{13}C_9$, ^{15}N] was given to the plants (Figure 3D). All together these results demonstrate that *At4g19010* is involved in the biosynthesis of the benzenoid moiety of ubiquinone via the phenylalanine route.

In Vitro Activities of At4g19010

Previous investigations of the in vitro substrate prefer-

Figure 3. At4q19010 Is Involved in the Biosynthesis of the Ring of Ubiquinone from Phenylalanine. (A) Structure of the At4g19010 locus and location of the SALK 043310 and SK29455 insertions. Boxes and lines represent exons and introns, respectively. RTfwd and RTrvs indicate the location of the RT-PCR primers. (B) RT-PCR analyses of RNA abundance in wild-type and at4q19010 plants showing that SALK_043310 is a knockout mutant and that SK29455 is a knockdown mutant. (C) Total ubiquinone (reduced and oxidized) levels in the leaves of wild-type plants, SALK_043310 knockout and SK29455 knockdown T-DNA mutants, and At4g19010 overexpressing line OE1 and OE2. FW, fresh weight. (D) Total ubiquinone-[Ring-13C₆] levels in axenically grown wild-type and SALK_043310 Arabidopsis plants fed with 250 µM doses of Phe- $[^{13}C_9]$ or Tyr- $[^{13}C_9, ^{15}N]$ for 3 h. Data in **(C)** and **(D)** are means of four biological replicates ± se. Asterisk annotations indicate significant difference from the wild type as determined by Fisher's test (P < α = 0.05) from an analysis of variance.

ence of acyl activating enzymes reported conflicting data for At4q19010: one study mentioning marginal activity with caffeate and ferulate only (Costa et al., 2005), while a later study showed that the enzyme possessed conspicuous activity with *t*-cinnamate, *p*-coumarate, caffeate, and ferulate as well as with various aliphatic acids (Kienow et al., 2008). To clarify this point, an N-terminally 6xhis-tagged version of At4q19010 was codon-optimized for expression in E. coli, purified, and assayed using a standard spectrophotometric method with CoA, ATP, and t-cinnamate, p-coumarate, ferulate, caffeate, sinapate, 4-hydroxybenzoate, or acetate as substrates. CoA ligase activity was readily detected with t-cinnamate, p-coumarate, ferulate, and caffeate, allowing further investigation of At4g19010's kinetic properties. $K_{m'}$, $k_{cat'}$ and k_{cat}/K_m values determined with p-coumarate, ferulate, and caffeate were similar (Table 2). The catalytic efficiency of the enzyme with t-cinnamate was only 20 to 35% of that mea-

sured with *p*-coumarate, ferulate, or caffeate, owing to a lower k_{cat} value with this substrate (Table 2). Overall, the kinetic parameters of At4g19010 determined with t-cinnamate, p-coumarate, ferulate, and caffeate were similar to those previously reported for plant p-coumarate and t-cinnamate-CoA ligases (Ehlting et al., 1999; Hamberger and Hahlbrock, 2004; Klempien et al., 2012). Notably, as is usually observed for pcoumarate-CoA ligases (Ehlting et al., 1999; Hamberger and Hahlbrock, 2004), no activity was detected with sinapate, the ring of which is methoxylated on C5, while t-cinnamate, pcoumarate, ferulate, and caffeate are unsubstituted at this position (Table 2). Anecdotal catalytic efficiency was found with 4-hydroxybenzoate, while no activity could be detected with acetate (Table 2). These data thus verify that recombinant At4q19010 is predominantly active with t-cinnamate, pcoumarate, ferulate, and caffeate, although they say nothing about which of these substrates might actually play a role in ubiquinone biosynthesis in vivo. Assays with plant extracts did not show any statistically significant difference in CoA ligase activity between wild-type and at4g19010 knockout plants (Supplemental Table 1).

t-Cinnamate, p-Coumarate, and 4-Hydroxybenzoate Serve as Ubiquinone Precursors

To gain some insight into the architecture of the metabolic branch of which At4q19010 belongs to, ubiquinone levels were determined in wild-type and at4q19010 knockout plants fed with t-cinnamate (the product of phenylalanine ammonia lyase), p-coumarate, ferulate, or caffeate, or with their corresponding shortened aliphatic side-chain versions, i.e., benzoate, 4-hydroxybenzoate, vanillate, or 3,4-dihydroxybenzoate, respectively (Figure 4A). Feeding wild-type plants with t-cinnamate, p-coumarate, and 4-hydroxybenzoate increased ubiquinone content by ~30% compared with the DMSO control, whereas only 4-hydroxybenzoate restored ubiquinone biosynthesis in the at4g19010 knockout (Figure 4B). Because t-cinnamate is the immediate precursor of p-coumarate (Schilmiller et al., 2009) and plants are able to derive 4-hydroxybenzoate from p-coumarate (Löscher and Heide, 1994), our results strongly suggest that t-cinnamate, p-coumarate, and 4-hydroxybenzoate are used as precursors of ubiquinone via the same metabolic branch. That ubiquinone biosynthesis in the at4g19010 knockout is rescued exclusively by 4-hydroxybenzoate would therefore indicate that the loss of function of At4g19010 creates a metabolic blockage upstream of 4-hydroxybenzoate and downstream of *t*-cinnamate and *p*-coumarate. Agreeing with such a model, an Arabidopsis reduced epidermal fluorescence3-2 (ref3-2) leaky mutant that displays reduced cinnamate 4-hydroxylase activity and is thus impaired in its ability to convert *t*-cinnamate into *p*-coumarate (Schilmiller et al., 2009) contained only 40% of wild-type ubiquinone level (Figure 4C) and displayed a 75% decrease in isotopic enrichment of ubiquinone-[*Ring*-¹³C₆] from Phe-[¹³C₉] (Figure 4C). As observed for the *at4g19010* knockout, the incorporation of Tyr-[¹³C₉;¹⁵N] into ubiquinone in the *ref3-2* mutant remained intact (Figure 4C). Taken together, these results are consistent with At4g19010 operating as a CoA ligase that activates the propyl side chain of *p*-coumarate for its subsequent β-oxidative shortening, leading to 4-hydroxybenzoate.

At4g19010 Is Localized in Peroxisomes

Homology searches across terrestrial plant lineages showed that the putative orthologs of At4q19010 display the hallmark stringent conservation of an authentic peroxisomal targeting sequence-1 (Figure 5A). Coexpression experiments in Nicotiana benthamiana mesophyll cells confirmed that the green pseudocolor of the green fluorescent protein (GFP) fused to the N terminus of At4g19010 strictly colocalized with the red pseudocolor of a red fluorescent protein (RFP)-tagged fragment of 3-keto-acyl-CoA thiolase 2 in peroxisomes (Figure 5B). Control coexpression of the GFP-At4q19010 fusion protein with RFP-tagged isovaleryl-CoA dehydrogenase verified that the fluorescence of GFP was not associated with mitochondria (Figure 5C). That At4g19010 is localized in peroxisomes, while cinnamate-4-hydroxylase is bound to the endomembrane system in the cytosol (Achnine et al., 2004), implies that p-coumarate might be transported into peroxisomes. Reexamination of the At419010/SPS3/ABC1 functional network identified the peroxisome ABC subfamily D transporter 1 or PXA1 (Zolman et al., 2001) as one of the interacting genes shared between At4g19010 and SPS3 (rank 214 and 291, respectively; Supplemental Data Set 1). Quinone analysis showed that the pxa1 knockout contained 55% less ubiquinone than the wild-type control and that as observed for the at4g19010 and ref3-2 mutants, such a loss was exclusively attributable to a decrease in biosynthetic flux from phenylalanine (Figures 6A and 6B). Feeding experiments showed that of *t*-cinnamate, *p*-coumarate, and 4-hydroxybenzoate, only the latter rescued ubiquinone biosynthesis in the pxa1 knockout, demonstrating that here again the metabolic blockage occurred between p-coumarate and 4-hydroxybenzoate (Figure 6C). Further verifying that the impact of the *pxa1* mutation on quinone metabolism

	<i>K</i> _m (μM)	$k_{cat} (s^{-1}) = k_{cat} / K_m (s^{-1}, mM^{-1})$	
t-Cinnamate	112 ± 37	0.7 ± 0.2	6 ± 2
<i>p</i> -Coumarate	125 ± 25	2.1 ± 0.4	17 ± 3.4
Ferulate	113 ± 45	3.6 ± 1.4	32 ± 13
Caffeate	85 ± 12	2.4 ± 0.3	28 ± 4
Sinapate	n.d.	n.d.	n.d.
4-Hydroxybenzoate	67 ± 30	0.01 ± 0.01	0.15 ± 0.07
Acetate	n.d.	n.d.	n.d.

Table 2. Kinetic Properties of Recombinant At4g19010

Data are means of six experimental replicates from two enzyme purifications ± SE. n.d., not determined, for no activity was detected at any of the substrate concentrations tested.

is specific to ubiquinone biosynthesis, no statistically significant difference in the levels of phylloquinone, the naphthoquinone ring of which is made in part in peroxisomes (Reumann, 2013), was observed between the *pxa1* mutant and the wildtype control (Figure 6D).

Discussion

Plant Peroxisomes Contribute to the Biosynthesis of Ubiquinone

Despite the role of ubiquinone as a crucial cofactor for respiration, the metabolic origin of its benzenoid ring has long remained enigmatic in most eukaryotes (Clarke, 2000; Kawamukai, 2009). One might assume that since plants synthesize pABA de novo (Quinlivan et al., 2003), they could use this metabolite for the biosynthesis of ubiquinone as yeast does (Marbois et al., 2010; Pierrel et al., 2010). Our data show that this is not so, most probably because, unlike yeast, plant cells sequester pABA as a glucose ester conjugate and thus have a minute pool of the free acid form (Quinlivan et al., 2003). Collectively, our data demonstrate that plants have evolved instead the capacity to derive the benzenoid moiety of ubiquinone from the β-oxidative metabolism of phenylpropanoids, adding de facto respiration to the core cellular processes that depend upon plant peroxisomes. Such an arrangement results in an elaborate biosynthetic architecture, in which intermediates are trafficked between the cytosol, where p-coumarate is made (Achnine et al., 2004), peroxisomes, where this study shows that p-coumarate is activated by ligation with CoA for its subsequent shortening into 4-hydroxybenzoate, and mitochondria, where the latter is prenylated and modified (Avelange-Macherel and Joyard, 1998; Okada et al., 2004; Ducluzeau et al., 2012). A proposed scheme of the cognate metabolic branches and their respective compartmentation is shown in Figure 7. A compelling parallel can actually be drawn between our finding that the peroxisome transporter PXA1 participates in this trafficking and the earlier report that PXA1 is required for the β-oxidative activation of the protoherbicide 2,4-dichlorophenoxybutyric acid into 2,4-D (Footitt et al., 2002). Indeed,

Figure 4. t-Cinnamate, p-Coumarate, and 4-Hydroxybenzoate Serve as Precursors of Ubiquinone in Arabidopsis. (A) Structures of t-cinnamic, p-coumaric, ferulic and caffeic acids, and their corresponding shortened aliphatic side-chain versions. (B) Total ubiquinone (reduced and oxidized) levels in axenically grown wildtype and SALK_043310 Arabidopsis plants fed for 24 h with 200 µM t-cinnamate, p-coumarate, ferulate, caffeate, benzoate, 4-hydroxybenzoate (4-HB), vanillate, or 3,4-dihydroxybenzoate (3,4-DHB). Data are means of four biological replicates ± se. Asterisk annotations indicate significant difference from the corresponding DMSO control as determined by Fisher's test (P < α = 0.05) from an analysis of variance. FW, fresh weight. (C) Left panel, total ubiquinone levels in the leaves of the wild type and cinnamate-4 hydroxylase mutant (ref3-2) Arabidopsis plants. Right panel, total ubiquinone-[Ring-13C₆] levels in axenically grown wild-type and ref3-2 Arabidopsis plants fed with 250 µM doses of Phe-[$^{13}C_9$] or Tyr-[$^{13}C_9$, ^{15}N] for 3 h. Data are means of four biological replicates ± se. Asterisk annotations indicate significant difference from the wild type as determined by Fisher's test (P < α = 0.05) from an analysis of variance.

Figure 5. Subcellular Localization of At4g19010. **(A)** Alignment of the C-terminal regions of At4g19010 and its orthologs in cacao tree (*Theobroma cacao*), willow (*Salix arbutifolia*), poplar (*Populus trichocarpa*), cucumber (*Cucumis sativus*), strawberry (*Fragaria vesca*), peach (*Prunus persica*), chickpea (*Cicer arietinum*), tomato (*Solanum lycopersicum*), grape vine (*Vitis vinifera*), maize (*Zea mays*), rice (*Oryza sativa*), *Brachypodium distachyon*, and *Selaginella moellendorffii*. The tripeptides corresponding to consensus peroxisomal targeting sequence-1 are highlighted in red. Identical residues are shaded in black and similar ones in gray. Dashes symbolize gaps introduced to maximize alignment. **(B)** Left panel, green pseudocolor of GFP fused to the N terminus of At4g19010; center panel, red pseudocolor of gre fused to the N terminus of At4g19010; center panel, red pseudocolor of the N terminus of At4g19010; center panel, red pseudocolor of mitochondrial marker RFP-tagged isovaeryl-CoA dehydrogenase (IVDH); right panel, overlay.

while wild-type *Arabidopsis* is sensitive to both 2,4-dichlorophenoxybutyric acid and 2,4-D, the *pxa1* knockout is unable to β -oxidize 2,4-dichlorophenoxybutyric acid and is sensitive only to 2,4-D (Footitt et al., 2002). Similarly, our data show that ubiquinone biosynthesis in the *pxa1* knockout is restored by 4-hydroxybenzoate, but not by its parent compound *p*-coumarate. Furthermore, the recent demonstration that PXA1 displays acyl-CoA thioesterase activity (De Marcos Lousa et al., 2013), raises the question of whether the cytosolic pool of *p*-coumaryl-CoA contributes to ubiquinone biosynthesis.

The Function of At4g19010 in Ubiquinone Biosynthesis Is That of a p-Coumarate-CoA Ligase

At4g19010 belongs to clade V of the plant superfamily of acyl-activating enzymes, the respective cellular functions of which have been so far particularly difficult to attribute due to their general lack of substrate specificity in vitro (Kienow et al., 2008; Shockey and Browse, 2011). In fact, besides At4g19010, only one out of eight clade V Arabidopsis members, At1q20510, which encodes for 3'-oxo-2-(2'-[Z]-pentenyl) cyclopentane-1-octanoic acid CoA ligase 1 (OPCL1) of the jasmonate biosynthetic pathway, has a known physiological role (Koo et al., 2006). In vitro, OPCL1 is as active with C8-C18 aliphatic acids as it is with 3'-oxo-2-(2'-[Z]-pentenyl) cyclopentane-1-octanoic acid, its authentic in vivo substrate (Kienow et al., 2008). Similarly, At1g20500, another class V member, displays as much activity with sinapate as it does with the structurally unrelated jasmonate precursor 3'-oxo-2-(2'-[Z]pentenyl) cyclopentane-1-hexanoic acid (Kienow et al., 2008). Therefore, it is clear that the in vivo function of class V acyl activating enzymes cannot be inferred from their substrate preference alone. In this study, we present three lines of evidence

Figure 6. The Peroxisomal Transporter PXA1 Is Involved in Ubiquinone Biosynthesis from Phenylalanine. (A) Total ubiquinone (reduced and oxidized) levels in the leaves of wild-type and pxa1 knockout Arabidopsis plants. Data are means of four biological replicates ± se. Asterisk annotations indicate significant difference from the wild type as determined by Fisher's test (P < α = 0.05) from ANOVA. FW, fresh weight. (B) Total ubiquinone- $[Ring^{-13}C_6]$ levels in axenically grown wild-type and pxa1 knockout Arabidopsis plants fed with 100 μ M doses of Phe-[¹³C_o] or Tyr-[¹³C_o;¹⁵N] for 3 h. Data are means of four biological replicates ± se. Asterisk annotations indicate significant difference from the wild type as determined by Fisher's test (P < α = 0.05) from ANOVA. (C) Total ubiquinone levels in axenically grown wild-type and pxa1 knockout Arabidopsis plants fed for 24 h with 200 µM t-cinnamate, p-coumarate, or 4-hydroxybenzoate (4-HB). Data are means of three to five biological replicates ± se. Asterisk annotations indicate significant difference from the corresponding DMSO control as determined by Fisher's test (P < α = 0.05) from ANOVA. (D) Phylloquinone levels in the leaves of wild-type pxa1 Arabidopsis plants. Data are means of three biological replicates ± se. Wild-type and pxa1 values are not significantly different as determined by Fisher's test from ANOVA (P > 0.4).

indicating that the role of At4g19010 in ubiquinone biosynthesis is that of a *p*-coumarate-CoA ligase. First, the usage of *p*-coumarate as a precursor for ubiquinone biosynthesis is blocked in the *at4g19010* knockout. Second, this blockage can be bypassed exclusively by the exogenous supply of 4-hydroxybenzoate, the β -oxidized product of *p*-coumarate. Last, recombinant At4g19010 catalyzes the conversion of *p*coumarate into *p*-coumaroyl-CoA with similar catalytic efficiency to that of previously characterized *p*-coumarate-CoA ligases, while as is generally observed for this class of enzymes, At4g19010 is not active with sinapate (Ehlting et al., 1999; Hamberger and Hahlbrock, 2004).

β-Oxidation of Phenylpropanoids Is a Common Mechanism in the Biosynthetic Pathways of Benzenoid-Derived Compounds

The β -oxidative shortening of *p*-coumarate is reminiscent of that of t-cinnamate, which undergoes a similar route in the biosynthetic pathways of benzoyloxyglucosinolates, xanthone phytoalexin, and benzenoid floral volatiles (Kliebenstein et al., 2007; Colquhoun et al., 2012; Gaid et al., 2012; Klempien et al., 2012; Lee et al., 2012; Bussell et al., 2014). The conversion of pcoumaryl-CoA into 4-hydroxybenzoate requires four yet to be identified steps, i.e., those corresponding to the hydration, dehydrogenation, and thiolation of the β -oxidative cycle followed by the final hydrolysis of the 4-hydroxybenzoyl-CoA thioester. A prime Arabidopsis candidate for the hydration and dehydrogenation steps is the bifunctional peroxisomal enzyme AIM1 (Richmond and Bleecker, 1999), the petunia (Petunia hybrida) ortholog of which was recently shown to participate in the β-oxidative shortening of cinnamoyl-CoA into benzoic acid and to be also active with p-coumaroyl-CoA (Qualley et al., 2012). Similarly, peroxisomal thiolases and CoA thioesterases that act on benzenoid substrates have recently been identified in plants (Van Moerkercke et al., 2009; Widhalm et al., 2012). Plant peroxisomes thus appear to contain the necessary core enzymatic machinery to complete the β-oxidation of *p*-coumaroyl-CoA to 4-hydroxybenzoate.

Figure 7. Architecture of 4-Hydroxybenzoic Acid Biosynthesis from Phenylalanine in Relation to Ubiquinone Biosynthesis. The Arabidopsis mutants investigated in this study are indicated in red. Dashed arrows denote multiple steps. 4-HB, 4-hydroxybenzoic acid; PAL, phenylalanine ammonia lyase.

Plants Possess a Second Route to Synthesize the Ring of Ubiquinone

It is clear from our data that phenylalanine supplies approximately half of ubiquinone biosynthetic flux and that plants can also use tyrosine to make the ring of ubiquinone. That the at4q19010, ref3-2, and pxa1 mutants have fully retained the capacity to incorporate the benzenoid skeleton of tyrosine into ubiquinone indicates that this alternate route does not intersect with that originating from phenylalanine. Interestingly, the biosynthesis of terpenoid benzoquinones in plastids provides an evolutionary instance of tyrosine serving as a ring precursor via a non-β-oxidative route (DellaPenna and Pogson, 2006). In this pathway, tyrosine is first deaminated into 4-hydroxyphenylpyruvate, which is then decarboxylated and hydroxylated with concomitant migration of the side chain, yielding homogentisate (Supplemental Figure 2). The loss of a second carbonyl occurs simultaneously with the prenylation of homogentisate (Supplemental Figure 2). Future investigations will examine the possible occurrence of metabolic branch-points from 4-hydroxyphenylpyruvate and homogentisate toward ubiquinone.

Methods

Bioinformatics

Protein and gene sequences were retrieved from the National Center for Biotechnology Information database (http://www. ncbi.nlm.nih.gov). Protein sequences were aligned using MultAlin (http://multalin.toulouse.inra.fr/multalin/). Orthology was determined using phylogeny.fr (http://www.phylogeny.fr). Gene networks were reconstructed by mining coexpressors from the ATTED-II database (http://atted.jp) using *Arabidopsis thaliana* respiratory genes as queries. Coexpressing genes were then aggregated using GeneVenn (http://genevenn.sourceforge.net).

Chemicals and Reagents

p-Aminobenzoic acid-[¹³C₆] was from IsoSciences, I-phenylalanine-[¹³C₉], and I-tyrosine-[¹³C₉;¹⁵N] were from Cambridge Isotope Laboratories. *t*-Cinnamic and benzoic acids and their hydroxyl/methoxy derivatives were from Sigma-Aldrich. Unless mentioned otherwise, other reagents were from Fisher Scientific.

Plant Material and Growth Conditions

Arabidopsis SALK_043310 (Alonso et al., 2003) and SK_29455 (Robinson et al., 2009) insertion lines, as well as the *pxa1* ethyl methanesulfonate mutant (Zolman et al., 2001; stock number CS3950), were obtained from the ABRC. The *ref3-2* mutant was generated and identified in the laboratory of one of the coauthors (C.C.) as previously described (Schilmiller et al., 2009). Seeds were germinated on Murashige and Skoog solid medium, transferred to soil, and then grown at 22°C in 16-h days (110 $\mu E m^{-2} s^{-1}$) for 4 weeks. For feeding experiments, plants were germinated and grown in Murashige and Skoog liquid medium containing sucrose (10 g/liter) on an orbital shaker (60 rpm) in 10-h days (200 $\mu E m^{-2} s^{-1}$) at 22°C.

RT-PCR Analyses

Total leaf RNA was extracted using the RNeasy plant mini kit (Qiagen). cDNAs were then prepared from total RNA (500 ng) using the ImProm-II reverse transcription system (Promega). PCR amplification was performed on a 3Prime thermal cycler (Techne) using the following gene-specific primer pairs: *At4g19010*, 5'-GGAGTTTGTGGTGAAGTGTTT-3' and 5'-CAAGGGATGTGAAA-CAAGAAC-3'; actin control, 5'-CTAAGCTCTCAAGATCAAAGGC-3' and 5'-TTAACATTGCAAAGAGTTTCAAGG-3'.

Preparation of Recombinant At4g19010 and Plant Extracts

Full-length At4g19010 cDNA (ABRC clone G60335) was codon optimized (GenScript) and subcloned using Gateway technology into expression vector pDEST17 (Invitrogen) for N-terminal fusion with a 6xHis tag. This construct was introduced in Escherichia coli BL21 Star (DE3) pLysS (Invitrogen). Protein expression was induced in Luria-Bertani medium with 0.5 mM isopropyl β-d-1-thiogalactopyranoside for 16 h at 20°C. Cells were harvested by centrifugation and disrupted in 50 mM NaH₂PO₄ (pH 8.0), 300 mM NaCl, 10 mM imidazole, and 0.1% (v/v) Triton X-100 using 0.1-mm Zirconia/silica beads in a MiniBeadbeater (BioSpec Products). The extract was cleared by centrifugation, and the recombinant protein was purified under native conditions with Ni-NTA His-Bind resin (Novagen) following the manufacturer's recommendations. The isolated enzyme was desalted on a PD-10 column equilibrated in 100 mM KH_2PO_4 (pH 8.0), 10% (v/v) glycerol, and 5 mM MqCl₂. The desalted enzyme was frozen in liquid N₂ and stored at -80° C. Negative controls consisting of untransformed BL21 Star (DE3) pLysS cells were processed in parallel. For the preparation of plant extracts, Arabidopsis leaves (1 g) were ground into a fine powder using a mortar and pestle under liquid N_2 . The powder was then thawed in 5 mL of 100 mM KH₂PO₄ (pH 8.0), 10% (v/v) glycerol, 5 mM MgCl₂, 1% (v/v) of β -mercaptoethanol, and 5% (w/v) of crosslinked poly vinylpyrrolidone. Extracts were centrifuged (10,000g for 10 min at 4°C) to pellet the cell debris and the supernatants immediately desalted on a PD-10 column equilibrated in 100 mM KH₂PO₄ (pH 8.0), 10% (v/v) glycerol, and 5 mM MgCl₂. Desalted fractions were dispensed into 500 µL aliquots, flash frozen in liquid N_{γ} and stored at -80°C. Protein concentration was quantified by the method of Bradford (Bradford, 1976) using BSA as a standard.

Enzyme Assays

Assays (1 mL) contained 100 mM KH_2PO_4 (pH 8.0), 10% (v/v) glycerol, 5 mM MgCl₂, 2.5 mM ATP, 0.5 mM CoA, 0 to 300 μ M of organic acid, and 0 to 25 μ g of protein. Reactions were performed for 30 to 60 min at 30°C. The increase in absorbance due to the formation of the CoA thioesters was monitored on an Agilent 8453 diode array spectrophotometer using the following wavelengths and molar extinction coefficients: 311 nm and 22,000 M⁻¹ cm⁻¹ for *t*-cinnamoyl-CoA, 333 nm and 21,000 M⁻¹ cm⁻¹ for *f*-coumaroyl-CoA, 345 nm and 19,000 M⁻¹ cm⁻¹ for feruloyl-CoA, 346 nm and 18,000 M⁻¹ cm⁻¹ for caffeoyl-CoA, 352 nm and 20,000 M⁻¹ cm⁻¹ for sinapoyl-CoA, 330 nm and 24,000 M⁻¹ cm⁻¹ for acetyl-CoA (Dawson et al., 1986; Lee et al., 1997; Egland and Harwood, 2000).

Terpenoid Quinones Analyses

For ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, ubiquinone was extracted as previously described (Ducluzeau et al., 2012), except that the reduction step with NaBH_a was omitted. Reduced and oxidized ubiquinones were separated on an Eclipse Plus C18 column (Agilent Technologies) held at 40°C at a flow rate of 0.2 mL min⁻¹ with a binary gradient system consisting of solvent A, methanol: isopropanol (80:20) + 10 mM ammonium acetate, and solvent B, isopropanol: hexane (60:40) + 10 mM ammonium acetate. An 8-min gradient was generated starting with 30% solvent B for 3 min and increased to 60% solvent B over 2 min and held at 60% for 1 min before returning to 30% B at 6.6 min. The eluate was directed to a TurboV ion source of the 4000 QTRAP triple quadrupole mass spectrometer operated in positive mode at +5000 V. The temperature was held at 200°C, nebulizing gas (GS1) was set at 16 p.s.i., focusing gas (GS2) at 20 p.s.i., curtain gas at 20 p.s.i., and the interface heater was engaged. Declustering potential (40 V), collision energy (34 V), entrance potential (10 V), and collision exit potential (11 V) were optimized using a standard of ubiquinone-10. Reduced and oxidized ubiquinones were measured by Multiple Reaction Monitoring using dwell times of 50 ms and the following ion pairs: ubiquinone-9 (812.8/197.1), ubiquinol-9 (814.8/197.1), ubiquinone-10 (880.8/197.1), ubiquinol-10 (882.8/197.1), ubiquinone-9-[$^{13}C_6$] (818.8/203.1), ubiquinol-9-[$^{13}C_6$] (820.8/203.1), ubiquinone-10-[$^{13}C_6$] (886.8/203.1), and ubiquinol-10-[$^{13}C_6$] (888.8/203.1). Retention times were 3.1 min for ubiquinol-9, 3.6 min for ubiquinol-10, 4.1 min for ubiquinone-9, and 5 min for ubiquinone-10. HPLC-diode array spectrophotometry analysis of total ubiquinones was performed as previously described (Ducluzeau et al., 2012). Phylloquinone levels were determined on the leaves of *Arabidopsis* plants grown on Murashige and Skoog medium containing sucrose using the HPLC-fluorescence method of Widhalm et al. (2012).

Subcellular Localization and Overexpression of At4g19010 in Arabidopsis

Full-length At4q19010 cDNA was subcloned into pK7WGF2 (Karimi et al., 2002) using Gateway technology, resulting in an inframe fusion of GFP to the N terminus of At4q19010. The KAT2eqFP611 peroxisomal marker cassette, encoding for a fragment (residues 1 to 99) of Arabidopsis 3-keto-acyl-CoA thiolase 2 fused to the N-terminal end of RFP under the control of the 35S promoter (Forner and Binder, 2007), was subcloned into the EcoRI and PstI sites of binary vector PZP212 (Hajdukiewicz et al., 1994). Vector pLN3639 allowed expression of the IVDH mitochondrial marker consisting of the N-terminal region of isovaleryl-CoA dehydrogenase fused to the N-terminal end of RFP under the control of the 35S promoter (Block et al., 2010). The 35S:GFP-At4g19010 construct was electroporated into Agrobacterium tumefaciens C58C1 for subsequent coinfiltration into the leaves of Nicotiana benthamiana with a second strain harboring either PZP212-35S:KAT2-eqFP611 or pLN3639. Epidermal cells were imaged by confocal microscopy 48 h later using a Nikon A1 laser scanning microscope. GFP, RFP, and chlorophyll were excited and collected sequentially. Excitation wavelengths were 488 nm for GFP, 561 nm for RFP, and 641 nm for chlorophyll. Emissions were collected from 500 to 550 nm for GFP, 570 to 620 nm for RFP, and 663 to 738 nm for chlorophyll.

Stable Overexpression of At4g19010 in Arabidopsis

Full-length *At4g19010* cDNA was subcloned under the control of the 35S promoter in pB2GW7 (Karimi et al., 2002) using Gateway technology. This construct was introduced into *Arabidopsis* plants ecotype Columbia-0 using the floral dip method (Clough and Bent, 1998), and the resulting transgenics were selected on soil by spraying 100 mg L⁻¹ of BASTA.

Accession Numbers

Sequence data from this article can be found in the Gen-Bank/EMBL libraries under the following accession numbers: *At2g34630* (SPS3), *At4g01660* (ABC1), *At2g44520* (COX10), *At3g15352* (COX17), *At1g02410* (COX11), *At5g56090* (COX15), *At1g26340* (CB5-A), *AtMg00510* (NAD7), *At4g21090* (MFDX2), *At3g17910* (SURF1), *At5g62050* (OXA1), and *At3g08950* (HCC1). At4g19010 (AAO64847.1) and its orthologs EOY25276.1 (*T. cacao*), AGO89326.1 (*S. arbutifolia*), XP_002304364.1 (*P. trichocarpa*), XP_004144410.1 (*C. sativus*), XP_004301643.1 (*F. vesca*), EMJ05131.1 (*P. persica*), XP_004512448.1 (*C. arietinum*), XP_004245937.1 (*S. lycopersicum*), XP_002270360.1 (*V. vinifera*), DAA46521.1 (*Z. mays*), EAZ05563.1 (*O. sativa*), EAZ05563.1 (*B. distachyon*), and XP_002985111.1 (*S. moellendorffii*).

Supplemental Data

The following materials are available in the pages following this article.

Supplemental Figure 1. Extracted Counts of Ion Pairs for Multiple Reaction Monitorings of Ubiquinone

Isotopes.

- Supplemental Figure 2. Formation of the Ring of Plastid Prenyl Benzoquinones from Tyrosine.
- Supplemental Table 1. CoA Ligase Activity in Arabidopsis Extracts.
- Supplemental Data Set 1. Correlation Ranks and Functional Annotations of the Top 500 Coexpressors of At4g19010, SPS3, and ABC1.

Acknowledgments – This work was made possible in part by National Science Foundation Grants MCB-0918258, MCB-1148968 (to G.J.B.), and MCB-0919987 (to N.D.) and by the Gordon and Betty Moore Foundation through Grant GBMF2550.02 to the Life Sciences Research Foundation (to J.R.W.). We thank Doriane LeBourse for assistance with T-DNA mutant screening and subcloning of *At4g19010* cDNA.

Author Contributions

A.B., J.R.W., R.E.C., and G.J.B. designed and performed the research, analyzed the data, and wrote the article. A.F., Y.W., and C.E. performed the research and analyzed the data. S.A.M., E.B.C., C.C., and N.D. analyzed the data.

References

- Achnine, L., Blancaflor, E.B., Rasmussen, S., and Dixon, R.A. (2004). Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16: 3098–3109.
- Alonso, J.M., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.
- Avelange-Macherel, M.-H., and Joyard, J. (1998). Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J. 14: 203–213.
- Block, A., Fristedt, R., Rogers, S., Kumar, J., Barnes, B., Barnes, J., Elowsky, C.G., Wamboldt, Y., Mackenzie, S.A., Redding, K., Merchant, S.S., and Basset, G.J. (2013). Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids. J. Biol. Chem. 288: 27594–27606.
- Block, A., Guo, M., Li, G., Elowsky, C., Clemente, T.E., and Alfano, J.R. (2010). The *Pseudomonas syringae* type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell. Microbiol. 12: 318–330.
- Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
- Bussell, J.D., Reichelt, M., Wiszniewski, A.A., Gershenzon, J., and Smith, S.M. (2014). Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein abnormal INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol. 164: 48–54.
- Cardazzo, B., Hamel, P., Sakamoto, W., Wintz, H., and Dujardin, G. (1998). Isolation of an *Arabidopsis thaliana* cDNA by complementation of a yeast abc1 deletion mutant deficient in complex III respiratory activity. Gene 221: 117–125.

- Clarke, C.F. (2000). New advances in coenzyme Q biosynthesis. Protoplasma 213: 134–147.
- Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
- Colquhoun, T.A., Marciniak, D.M., Wedde, A.E., Kim, J.Y., Schwieterman, M.L., Levin, L.A., Van Moerkercke, A., Schuurink, R.C., and Clark, D.G. (2012). A peroxisomally localized acylactivating enzyme is required for volatile benzenoid formation in a *Petunia3hybrida* cv. 'Mitchell Diploid' flower. J. Exp. Bot. 63: 4821–4833.
- Costa, M.A., et al. (2005). Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in *Arabidopsis*: syringyl lignin and sinapate/sinapyl alcohol derivative formation. Phytochemistry 66: 2072–2091.
- Dawson, R.M.C., Elliot, D.C., Elliot, W.H., and Jones, K.M. (1986). Data for Biochemical Research. (New York: Oxford University Press).
- DellaPenna, D., and Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711–738.
- De Marcos Lousa, C., van Roermund, C.W., Postis, V.L., Dietrich, D., Kerr, I.D., Wanders, R.J., Baldwin, S.A., Baker, A., and Theodoulou, F.L. (2013). Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc. Natl. Acad. Sci. USA 110: 1279–1284.
- Ducluzeau, A.-L., Wamboldt, Y., Elowsky, C.G., Mackenzie, S.A., Schuurink, R.C., and Basset, G.J.C. (2012). Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J. 69: 366–375.
- Egland, P.G., and Harwood, C.S. (2000). HbaR, a 4-hydroxybenzoate sensor and FNR-CRP superfamily member, regulates anaerobic 4-hydroxybenzoate degradation by *Rhodopseudomonas palustris*. J. Bacteriol. 182: 100–106.
- Ehlting, J., Büttner, D., Wang, Q., Douglas, C.J., Somssich, I.E., and Kombrink, E. (1999). Three 4-coumarate:coenzyme A ligases in *Arabidopsis thaliana* represent two evolutionarily divergent classes in angiosperms. Plant J. 19: 9–20.
- Footitt, S., Slocombe, S.P., Larner, V., Kurup, S.,Wu, Y., Larson, T., Graham, I., Baker, A., and Holdsworth, M. (2002). Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21: 2912–2922.
- Forner, J., and Binder, S. (2007). The red fluorescent protein eqFP611: application in subcellular localization studies in higher plants. BMC Plant Biol. 7: 28.
- Gaid, M.M., Sircar, D., Müller, A., Beuerle, T., Liu, B., Ernst, L., Hänsch, R., and Beerhues, L. (2012). Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in *Hypericum calycinum* cell cultures. Plant Physiol. 160: 1267–1280.
- Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25: 989–994.
- Hamberger, B., and Hahlbrock, K. (2004). The 4-coumarate:CoA ligase gene family in *Arabidopsis thaliana* comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc. Natl. Acad. Sci. USA 101: 2209–2214.
- Karimi, M., Inzé, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193–195.

- Kawamukai, M. (2009). Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol. Appl. Biochem. 53: 217–226.
- Kienow, L., Schneider, K., Bartsch, M., Stuible, H.P., Weng, H., Miersch, O., Wasternack, C., and Kombrink, E. (2008). Jasmonates meet fatty acids: functional analysis of a new acylcoenzyme A synthetase family from *Arabidopsis thaliana*. J. Exp. Bot. 59: 403–419.
- Klempien, A., et al. (2012). Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 24: 2015–2030.
- Kliebenstein, D.J., D'Auria, J.C., Behere, A.S., Kim, J.H., Gunderson, K.L., Breen, J.N., Lee, G., Gershenzon, J., Last, R.L., and Jander, G. (2007). Characterization of seed-specific benzoy-loxyglucosinolate mutations in *Arabidopsis thaliana*. Plant J. 51: 1062–1076.
- Koo, A.J.K., Chung, H.S., Kobayashi, Y., and Howe, G.A. (2006). Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in *Arabidopsis*. J. Biol. Chem. 281: 33511–33520.
- Law, A.H., Threlfall, D.R., and Whistance, G.R. (1971). Isoprenoid phenol and quinone precursors of ubiquinones and dihydroubiquinones [Ubiquinones (H2)] in fungi. Biochem. J. 123: 331–339.
- Lee, D., Meyer, K., Chapple, C., and Douglas, C.J. (1997). Antisense suppression of 4-coumarate:coenzyme A ligase activity in *Arabidopsis* leads to altered lignin subunit composition. Plant Cell 9: 1985–1998.
- Lee, S., Kaminaga, Y., Cooper, B., Pichersky, E., Dudareva, N., and Chapple, C. (2012). Benzoylation and sinapoylation of glucosinolate R-groups in *Arabidopsis*. Plant J. 72: 411–422.
- Löscher, R., and Heide, L. (1994). Biosynthesis of *p*-hydroxybenzoate from *p*-coumarate and *p*-coumaroyl-CoA in cell-free extracts of *Lithospermum erythrorhizon* cell cultures. Plant Physiol. 106: 271–279.
- Marbois, B., Xie, L.X., Choi, S., Hirano, K., Hyman, K., and Clarke, C.F. (2010). para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in *Saccharomyces cerevisiae*. J. Biol. Chem. 285: 27827–27838.
- Nichols, B.P., and Green, J.M. (1992). Cloning and sequencing of *Escherichia coli* ubiC and purification of chorismate lyase. J. Bacteriol. 174: 5309–5316.
- Nowicka, B., and Kruk, J. (2010). Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta 1797: 1587–1605.
- Obayashi, T., Hayashi, S., Saeki, M., Ohta, H., and Kinoshita, K. (2009). ATTED-II provides coexpressed gene networks for *Arabidopsis*. Nucleic Acids Res. 37: D987–D991.
- Okada, K., Ohara, K., Yazaki, K., Nozaki, K., Uchida, N., Kawamukai, M., Nojiri, H., and Yamane, H. (2004). The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in *Arabidopsis thaliana*. Plant Mol. Biol. 55: 567–577.
- Olson, R.E., Bentley, R., Aiyar, A.S., Dialameh, G.H., Gold, P.H., Ramsey, V.G., and Springer, C.M. (1963). Benzoate derivatives as intermediates in the biosynthesis of coenzyme Q in the rat. J. Biol. Chem. 238: 3146–3148.
- Pierrel, F., Hamelin, O., Douki, T., Kieffer-Jaquinod, S., Mühlenhoff, U., Ozeir, M., Lill, R., and Fontecave, M. (2010). Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chem. Biol. 17: 449–459.

- Pribat, A., et al. (2010). Nonflowering plants possess a unique folatedependent phenylalanine hydroxylase that is localized in chloroplasts. Plant Cell 22: 3410–3422.
- Qualley, A.V., Widhalm, J.R., Adebesin, F., Kish, C.M., and Dudareva, N. (2012). Completion of the core b-oxidative pathway of benzoic acid biosynthesis in plants. Proc. Natl. Acad. Sci. USA 109: 16383–16388.
- Quinlivan, E.P., Roje, S., Basset, G., Shachar-Hill, Y., Gregory, J.F., III., and Hanson, A.D. (2003). The folate precursor p-aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. J. Biol. Chem. 278: 20731–20737.
- Pfaff, C., Glindemann, N., Gruber, J., Frentzen, M., and Sadre, R. (2014). Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium *Synechocystis* sp. PCC6803. J. Biol. Chem. 289: 2675–2686.
- Reumann, S. (2013). Biosynthesis of vitamin k1 (phylloquinone) by plant peroxisomes and its integration into signaling molecule synthesis pathways. Subcell. Biochem. 69: 213–229.
- Richmond, T.A., and Bleecker, A.B. (1999). A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11: 1911–1924.

- Robinson, S.J., et al. (2009). An archived activation tagged population of *Arabidopsis thaliana* to facilitate forward genetics approaches. BMC Plant Biol. 9: 101.
- Schilmiller, A.L., Stout, J., Weng, J.K., Humphreys, J., Ruegger, M.O., and Chapple, C. (2009). Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J. 60: 771–782.
- Shockey, J., and Browse, J. (2011). Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J. 66: 143–160.
- Van Moerkercke, A., Schauvinhold, I., Pichersky, E., Haring, M.A., and Schuurink, R.C. (2009). A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J. 60: 292–302.
- Widhalm, J.R., Ducluzeau, A.-L., Buller, N.E., Elowsky, C.G., Olsen, L.J., and Basset, G.J.C. (2012). Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoylcoa. Plant J. 71: 205–215.
- Zolman, B.K., Silva, I.D., and Bartel, B. (2001). The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid b-oxidation. Plant Physiol. 127: 1266–1278.

Supplemental Figure 1. Extracted counts of ion pairs for multiple reaction monitorings of ubiquinone isotopes. Axenically grown Arabidopsis were fed for 3h with 250 μ M doses of phenylalanine-[¹³C₉] (left panels), tyrosine-[¹³C₉;¹⁵N] (center panels) or *p*ABA-[¹³C₆] (right panels). Red dots indicate the positions of the ¹³C isotope.

Supplemental Figure 2. Formation of the ring of plastid prenyl benzoquinones from tyrosine. R is phytyl (C_{20}) in the biosynthetic pathway of tocopherols, and solanesyl (C_{45}) in that of plastoquinone. HPPD, 4-hydroxyphenylpyruvate dioxygenase; HPT, homogentisate phytyl transferase; HST, homogentisate solanesyl transferase; TT, tyrosine transaminase

Supplemental Table 1. CoA ligase activity in Arabidopsis extracts							
nmoles.mg ⁻¹ .h ⁻¹							
	<i>p</i> -coumarate	t-cinnamate	Ferulate	Caffeate			
Wild type	49 ± 18	12 ± 5	31 ± 8	48 ± 11			
at4g19010	54 ± 29	14 ± 9	44 ± 18	50 ± 13			

Arabidopsis leaf extracts (18-36 μ g) were assayed with 2.5 mM ATP, 0.5 mM CoA and 100 μ M of various hydroxycinnamate derivatives for 30-60 min at 30°C. The formation of the corresponding CoA thioesters was monitored spectrophotometrically as described in the Methods. Data are means of three replicates ± S.E. Wild-type and *at4g19010* knockout (SALK_043310) values are not significantly different as determined by Fisher's test from an analysis of variance (p>0.3).

Locus	Alias	Block et al. Plant Cell (2014) 10.1105/tpc.114.125807 Function	MR(all)	MR(tissue)	MR(abiotic)	MR(biotic)	MR(hormone N	ЛR(light)
0 At4g19010	ligase	AMP-dependent synthetase and ligase family protein	_	0	0 0	0	0	0
1 At1g66660	Protein with	Protein with RING/U-box and TRAF-like domains	12	.4 661.4	4 38.2 5 225.6	781.6	851	7998.1
3 At3g51790	TG1	transmembrane protein G1P-related 1	12	.5 315."	7 114.3	1462.7	173.5	907.8
4 At4g37120	SMP2	Pre-mRNA splicing Prp18-interacting factor	27	.1 156.	1 177.2	17.1	300	5800.6
5 At3g03950	ECT1	evolutionarily conserved C-terminal region 1	29	.9 1301.4	4 7	1395.3	2066.2	3477.9
6 At1g17130	DUF572	Family of unknown function (DUF572)	30	.7 2136.	2 82.2	1496.6	206.1	5428.6
7 Al4g39160 8 Δt1σ04860	Homeodoma	ubiquitin-specific protease 2	33	3 1564	0 109.9 5 116.1	923.2 2861 7	1958.0 7808.8	5728.5 2999 1
9 At1g74250	N-terminal	DNAJ heat shock N-terminal domain-containing protein	36	.3 1304	5 110.1 6 146.3	3141.5	284.5	12232.5
10 At1g48970	NagB	NagB/RpiA/CoA transferase-like superfamily protein	45	.9 993.	3 178.3	1182.4	1036.2	1454.7
11 At5g55200	MGE1	Co-chaperone GrpE family protein	48	.2 248.	3 205.8	177	3598.8	755.2
12 At2g04740	ankyrin repe	ankyrin repeat family protein	49	.8 364.	3 24.5	2869.9	12845.8	396.6
13 At2g34630 14 Δt2g30640	SPS3 transnosable	solanesyl diphosphate synthase 3 transposable element gene	57	.4 222.0	b 289.1 4 145.2	703.1	262.7	5/92.2
15 At5g26860	LON ARA AI	Flon protease 1	78	.4 96	1 137.8	1946.3	2051.5	614.8
16 At3g22980	G/III/V	Ribosomal protein S5/Elongation factor G/III/V family protein	81	.3 397.9	9 390.5	137.4	1125.1	2525.5
17 At4g09680	CTC1	conserved telomere maintenance component 1	100	.4 109.4	4 457.1	5332.4	1514.6	7498.4
18 At3g01800	Ribosome re	Ribosome recycling factor	101	.7 42	2 303	2173.2	2269.2	1554.2
19 At3g26400 20 Δt1σ18480	EIF4B1 SLP2	eukaryotic translation initiation factor 481 Calcineurin-like metallo-phosphoesterase superfamily protein	102	.2 1943 1 359	2 15.3 3 407.2	941.8	888.2	4311.4
21 246147 s at	5112	At5g19990:At5g20000	113	.4 3147.	3 131.7	277.3	4986.7	1258.1
22 At5g05210	Surfeit locus	Surfeit locus protein 6	113	.7 175	1 445.1	1232.7	1517.6	7367.2
23 At1g09810	ECT11	evolutionarily conserved C-terminal region 11	115	.1 1626.	6 353.3	3656.9	3839.6	9784.7
24 At1g16650	transferase	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	115	.4 953.	3 1052.4	2160.2	3139.1	3968
25 At2g20330	Transducin/V	Transducin/WD40 repeat-like superfamily protein	116	.9 571.0	6 258.8	3087.4	984.5	2148.7
26 At3g59280	CRE1	ovtokinin response factor 1	118	.4 836. 7 661	8 4/0.3 5 1008.2	930.8	5174.8	4365.8
28 At1g04945	HIT-type Zind	HIT-type Zinc finger family protein	120	.8 237	2 107.1	2786	2561.9	759
29 At1g20100		····· •) • • ···· ··· ··· ··· ··· ··· ··· · ··· ··· ··· ·	127	.9 24.	7 733.5	2755.8	3027.2	17063.2
30 At1g13870	DRL1	calmodulin binding;purine nucleotide binding	12	.8 695.	9 259.2	1607.2	2656.8	6583.6
31 At1g31600	TRM9	RNA-binding (RRM/RBD/RNP motifs) family protein	13	2 23.	2 1143.5	6063.6	298.3	8637.4
32 At3g08950	HCC1	electron transport SCO1/SenC family protein	144	.8 1640.	5 333.8	533	1609.7	5912.2
33 At3g4/120		KNA recognition motif (KKW)-containing protein	145	.4 1381.3 7 0821.0	8 554.5 D 511/	395./	2658.2	3670.4
35 At2g02880	mucin	mucin-related	140	.2 5790.0	5 511.4 6 60.6	3032.9	6549.8	8606.6
36 At1g43860	transcription	sequence-specific DNA binding transcription factors	152	.7 7024.	6 185.4	1711.9	1418.7	1389.4
37 At1g74750	PPR	Pentatricopeptide repeat (PPR) superfamily protein	152	.8 127	5 1012.8	1909.8	1990.8	802.8
38 At1g51710	UBP6	ubiquitin-specific protease 6	158	.2 2253.	8 99	626.3	3896.4	1211.6
39 At2g44520	COX10	cytochrome c oxidase 10	10	2628.	8 37.5	665.5	856.9	1331.3
40 At5g37570	PPR-IIKe	Ventatricopeptide repeat (PPR-like) superramily protein	169	.3 9/7.	1 447.8 5 1955	2102.1	1719.9	/024.2
41 At1g77370 42 At1g04930	glycoprotein	hydroxyproline-rich glycoprotein family protein	171	.2 2140.	9 458.6	5821.7	2249.9	15561.5
43 At4g16440	ferredoxin hy	/ferredoxin hydrogenases	172	.9 1353.	2 344.1	1617.2	949	5285.3
44 At5g20910	RING	RING/U-box superfamily protein	174	.9 7369.	1 454.6	65.1	3838.5	791.1
45 At1g76810	eIF-2	eukaryotic translation initiation factor 2 (eIF-2) family protein	175	.6 2426.4	4 82.3	1175.4	1849.2	3504.4
46 At2g35510	SRO1	similar to RCD one 1	176	.4 99.3	1 400.5	2591.3	3297.4	3954.7
47 At3g21140	oxidase	Pyridoxamine 5 -phosphate oxidase family protein	1//	.b 3059 0 2111	3 /34.4 5 504.6	634.3 2097 2	320.5	5595.9
49 At5g03030	DnaJ-domain	Chaperone DnaJ-domain superfamily protein	179	.2 1484.	5 68	3390.4	3608	1857.2
50 At3g10370	SDP6	FAD-dependent oxidoreductase family protein	182	.9 1135.	1 230.7	2007.9	3153.6	7965
51 At3g55620	emb1624	Translation initiation factor IF6	183	.8 814.	8 1036.9	316.2	1252.2	1580.7
52 At4g11160	GTP-binding	Translation initiation factor 2, small GTP-binding protein	187	.6 1358.	9 582.9	1733.5	818.1	3845
53 At5g30490	Dohrmoraca	Delementes (histidinal phosphatasa lika	190	.1 382	4 105.4	1839.7	3235.7	7634.9
55 At2g24500	FZF	Zinc finger protein 622	190	.2 9505.0	2 100.7 6 106.4	675.4	372.9	1070.2
56 At4g08460	DUF1644	Protein of unknown function (DUF1644)	196	.7 2994.	5 312.8	67.3	976.5	13517.7
57 At5g64400			198	.2 647.	5 305.1	1419.6	5109.2	7854.2
58 At2g03820	NMD3	nonsense-mediated mRNA decay NMD3 family protein	200	.9 2656.	6 71	1778.8	4198.6	624.2
59 At5g51130	transferase	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	201	.2 202	9 15	3479	1152.6	1294.3
60 At4g20090	EIVIB1025	Pentatricopeptide repeat (PPR) superramily protein	208	.2 2553.	L 23.8 4 1415	9906.7 4221.9	1265.2	/81.b 10/0 5
62 At3g18100	MYB4R1	myb domain protein 4r1	208	0 2455.	+ 141.3 3 116.9	2842.2	3474.3	10735.1
63 At3g12340	isomerase	FKBP-like peptidyl-prolyl cis-trans isomerase family protein	210	.5 3821.	2 44.8	2031.3	1345.8	7314
64 At1g16540	SIR3	molybdenum cofactor sulfurase (LOS5) (ABA3)	210	.6 2082.4	4 315.7	40.9	478.2	4637.5
65 At5g13070	MSF1-like	MSF1-like family protein	211	.1 1278.	5 836.5	1199.6	2187.7	2163.5
66 At3g12640	RNA binding	RNA binding (RRM/RBD/RNP motifs) family protein	218	.6 6462.	3 26.9	2229	3768.4	3675.5
68 At5g06110	DUF1296	Kinase-related protein of unknown function (DUF1296)	218	ο 5654.	1 262.4 7 11FF	920.5	3096.3	2419.5
69 At2g16860	GCIP-interact	GCIP-interacting family protein	220	.4 725	5 167 5	2835 5	4040.5	2455.7 8188 8
70 At5g25060	RRM	RNA recognition motif (RRM)-containing protein	231	.5 113.	8 111.7	739.2	1820.2	4451.6
71 At2g19270			236	.3 8942.	6 231.7	973.6	1484.2	5492.7
72 At5g27540	MIRO1	MIRO-related GTP-ase 1	237	.7 4675.	8 356	435.2	41.5	2902.3
73 At1g14300	ARM repeat	ARM repeat superfamily protein	238	.7 1139.	1 64.8	1049.7	3277.5	3176.3
75 At1a10370	AIPase GRD22	AAA-type ATPase family protein	240	.1 2086.9	9 266.3	4406.7	8820.3	1363.5
76 At1ø60620	RPAC43	RNA polymerase I subunit 43	241	0003.	- 95 3, 188 A	5908.1 1658 6	1292.9 1201 Q	1025 5764 8
77 At3g44680	HDA9	histone deacetylase 9	247	.4 3170.	3 195.2	2058	366.1	3159.6
- 78 At1g55870	PARN	Polynucleotidyl transferase, ribonuclease H-like superfamily protein	251	.8 3645.	5 30.9	8036.9	7736.2	7007.9

		Block et al. Plant Cell (2014) 10.1105/tpc.114.125807						
Locus		Function	MR(all) 253 /	MR(tissue)	MR(abiotic)	MR(biotic)	MR(hormone N	/IR(light)
80 At1g55080	MFD9		253.4	1138.8	1497.7	312.9	1516.4	9541.1
81 At1g55170			256.3	881.9	2831.4	2957.1	1187.2	5465.9
82 At5g51700	RPR2	protein binding;zinc ion binding	267.5	4109.5	2272.2	1542.5	493.3	4115.1
83 At3g21175	ZML1	ZIM-like 1	270	2575.4	849.4	1777.7	928.8	1624.6
84 At2g14850			270.3	1788.8	379.2	1929	3766.7	5783.6
86 At2g35736	VASCULAR-R	IVASCULAR-RELATED NAC-DUIVIAIN 6	274.9	2530.8	824.4	1169.5	16280.4	6482
87 At5g23520	smr	smr (Small MutS Related) domain-containing protein	276.2	1601.4	142.8	2737.4	3966.2	14797
88 At3g01540	DRH1	DEAD box RNA helicase 1	277.9	3802.2	585.4	830.4	243.9	9546.2
89 At4g21090	MFDX2	MITOCHONDRIAL FERREDOXIN 2	278	4560.3	195.3	1613.6	432.7	2011.5
90 At3g54170	FIP37	FKBP12 interacting protein 37	282.6	3022.2	1.4	5800.2	4637.8	7396.2
91 At5g22840	kinase	Protein Kinase superfamily protein R lean containing nucleoside triphosphate hydrolases superfamily protein	285.9	4496.6	152.4	4349.7	4562	2132.9
93 At1g51380	helicase	DFA(D/H)-box RNA helicase family protein	291.8	2950.6	230.1	4351.2	5054.4	780.6
94 At5g12290	DGS1	dgd1 suppressor 1	292.4	2259.8	1342.2	2527.3	932.4	1707.3
95 At3g20430			296.2	4373.9	420.9	8649.9	1985.3	4726.9
96 At3g15180	ARM repeat	ARM repeat superfamily protein	303.9	2122	1262.3	501.4	2774	713.8
97 At4g16845	VRN2	VEFS-Box of polycomb protein	304.6	2359.6	141.8	530.1	195.2	9699.5
98 At3g49320	hydrolase	Metal-dependent protein hydrolase	307.9	3090.2	189.2	4335.8	4553.1	3743.8
100 At5g18400	NIFZ inhibitor	Nuclear transport lactor 2 (NTF2) family protein with KNA binding (KKW-RBD-KNP motils Cytokine-induced anti-apontosis inhibitor 1. Ee-S biogenesis	309.8	3533	283.8	2049.9	3058.1	2/36/
101 At1g50400	Eukarvotic p	Eukarvotic porin family protein	323.3	845	283.8 92.9	9052.9	15114.3	1354.8
102 At1g28210	ATJ1	DNAJ heat shock family protein	323.9	1049.7	48.2	1524.8	2410.3	14844.8
103 At1g33390	FAS4	RNA helicase family protein	324.1	3180.5	843.5	3303.5	2301	9787.5
104 At4g04180	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	326.4	4494.7	198.1	4979.9	8149.6	10522.6
105 At2g45690	SSE1	shrunken seed protein (SSE1)	332	224.4	2823.5	3056.3	3763.5	13937.9
106 At1g75670	RNA polyme	DNA-directed RNA polymerases	332.2	5920.8	199.2	3289	3991.3	502.6
107 At3g02320	transferase	N2,N2-dimethylguanosine tRNA methyltransferase	333.5	5625.1	491.4	1295.0	1490.3	5848.5
109 At2g44200	splicing	CBF1-interacting co-repressor CIR. N-terminal:Pre-mRNA splicing factor	344.4	1290.9	308.1	2070.5	1036.5	5607.3
110 At5g44780	-1		344.8	3608.1	433.8	4601.4	7308.3	4546.5
111 At3g17740			346.6	1286	123.6	3333.6	3858.9	9237.1
112 At1g16210			347.5	3853.3	649.9	264.7	586.4	5585.6
113 At4g26800	PPR	Pentatricopeptide repeat (PPR) superfamily protein	347.5	2277.3	170.9	8498.3	1821.3	4597.2
114 At1g14060	GCK	GCK domain-containing protein	350.5	1430.5	840.5	3176.4	9087.6	970.6
115 At2g23080	CKA3	Protein Kinase supertamily protein	350.7	2720.5	5477.5	2685.2	887.2 2814.6	2953.3
117 At5g63010	Transducin/\	Transducin/WD40 repeat-like superfamily protein	355	5621.8	510.3	176.1	1989	4271.6
118 At5g42150	transferase	Glutathione S-transferase family protein	355.1	2694	442.1	2415.5	2147.5	4180.1
119 At3g15080	H-like	Polynucleotidyl transferase, ribonuclease H-like superfamily protein	357.1	9789.9	164.6	2802.1	1317.3	1447.4
120 At5g43130	TAF4B	TBP-associated factor 4	359.4	784.1	791.5	726.7	1329.3	4742.1
121 At2g03800	GEK1	D-aminoacyl-tRNA deacylases	360.8	253.4	1499.8	1164	803.5	6719.9
122 At1g01910	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	362.2	9372	885.4	306.4	932.9	4612.4
123 ALIG/3350 124 At3015352	COX17	ovtochrome c ovidase 17	364.7	1406.8 3467.7	430.1	3913.9	4000 1	18820.4
125 At5g09380	RPC4	RNA polymerase III RPC4	372.7	2737.2	411.4	2742.4	1899	16774.1
126 At3g56510	RNA-binding	RNA-binding (RRM/RBD/RNP motifs) family protein	373.7	6559.7	934.7	2466.9	781.7	1953.7
127 At1g78800	transferase	UDP-Glycosyltransferase superfamily protein	375.1	8904.7	1015	1625.4	1948.3	3806.1
128 At2g42280	DNA-binding	basic helix-loop-helix (bHLH) DNA-binding superfamily protein	377.3	1326.5	2627.5	1497.2	1873.4	11769.1
129 At1g64350	SEH1H	Transducin/WD40 repeat-like superfamily protein	378.8	1057.5	2339.6	1431.7	4034.9	44.5
130 256502_at	СНІР	AT1g3b/3U;AT1g3b/32	383.2	183.1	187.5	16/0.8	1013.2	13281
132 At5g58290	RPT3	regulatory particle triple-A ATPase 3	386.3	5199.2	1047.9	96.3	3418.4	577.3
133 At1g60850	RPAC42	DNA-directed RNA polymerase family protein	388.9	4544.3	220.6	3136	919.8	1815.7
134 At1g62260	MEF9	mitochondrial editing factor 9	391.1	2285.3	4000.2	14698.6	6591	9776.1
135 At1g53760			391.1	814.4	3054.3	242.7	1548.5	6933.3
136 At5g16930	ATPase	AAA-type ATPase family protein	391.7	3999.9	813.1	2271.5	1498.9	3687.9
137 At3g11220	ELO1	Paxneb protein-related	394.7	1557	1636.5	3623.8	2155.4	12//8.1
130 250750_5_aι 139 Δ†5σ26940	DPD1	ALIGUISSU,ALSGU0420 Polynucleotidyl transferase, ribonuclease H-like superfamily protein	397.9	4940.7 873 9	420	2647.0	2157.7	7541.8 2816.8
140 At2g31060	EMB2785	elongation factor family protein	406	539.6	1597	2962.1	1967	77.8
141 At5g22060	J2	DNAJ homologue 2	406.4	231.1	875.2	1844.1	1445.3	18919.1
142 At4g33650	DRP3A	dynamin-related protein 3A	408.7	80.9	3783.6	3255.9	2109	2329.2
143 At3g02010	PPR	Pentatricopeptide repeat (PPR) superfamily protein	409.5	2475.2	1314	10925.2	7396.4	9765.5
144 At5g46920	Intron matur	Intron maturase, type II family protein	411.1	4562.2	406.1	3238.5	3706.9	113.3
145 At4g15030			412.8	697.8 3715.8	/32.2 2018 0	1475.4	590.8	14925.2
147 At5g47080	CKB1	casein kinase II beta chain 1	414	3713.0	774.6	1020	793.2	987.9
148 At2g36740	SWC2	sequence-specific DNA binding transcription factors;DNA binding;DNA binding	415.6	1180.2	335.1	3714.7	4959.7	7978.9
149 At5g62050	OXA1AT	homolog of yeast oxidase assembly 1 (OXA1)	420.3	1844.1	489.1	3090.1	2242.8	845.5
150 At4g03240	FH	frataxin homolog	422	3504.7	1920.5	4938.2	8553.4	4082.5
151 At3g06540	REP	Rab escort protein	426.5	2939.5	720.6	1222.7	1551.5	13477.8
152 At5g19490	Histone	Histone superfamily protein	429.8	372.1	2138.9	13157.1	17879	5518.1
153 At4g38380	MGP3	ivia i cienta la finity protein male gametonhyte defective 3	431	203.8	131/.1 an o	2528 1	/6//.6	252/.6
155 At1g12470	zinc ion bind	izinc ion binding	431.9	6697 5	270.9	813 3	119.2	3031
156 At4g39520	GTP-binding	GTP-binding protein-related	435.7	1693.3	798.3	1242	1310	424.6
157 At1g02410	Cox11	cytochrome c oxidase assembly protein CtaG / Cox11 family	437	6596.9	997.3	8808.9	1392.6	7835.8

		Block et al. Plant Cell (2014) 10.1105/tpc.114.125807						
Locus	Alias	Function	MR(all) N	IR(tissue)	MR(abiotic)	MR(biotic)	MR(hormone N	/IR(light)
159 At2g27100	SE	C2H2 zinc-finger protein SERRATE (SE)	440.8	7261.6	66.4	4287.2	533.6	1719.9
160 At1g22960	PPR	Pentatricopeptide repeat (PPR) superfamily protein	441.6	560.7	304	5539.9	4493.6	8873.8
161 At2g23470	RUS4	Protein of unknown function, DUF647	448.2	963	1326.7	17068.4	11393.7	10040.2
162 At2g37890	Mitochondria	Mitochondrial substrate carrier family protein	448.8	4395.2	178	4267.4	5212.4	601.2
163 201433_S_at	Transducin/V	ALIg07670;ALIg07810 Transducin/WD40 repeat-like superfamily protein	451.9	8130.5 4128	958.7	4085.9	1441.9	778.6
165 At3g43510	transposable	transposable element gene	454.3	1571.5	400.2	3304.1	953.8	3072.3
166 At4g03180			460.4	10994.4	221.1	3150.4	2537.6	3421.2
167 At4g03430	STA1	pre-mRNA splicing factor-related	460.5	4238.7	607.3	3105	1476.6	3167
168 At4g21140	Dnal domain	Chaparana Dual domain superfamily protein	461.5	4815.8	444.4	2861.1	2384.6	1432.8
170 251951 s at		At1g55710:At3g53630:At4g18692	462.4	3903.2	56.6	3456.2	7880.8	2462.7
171 252271_s_at		At3g49420;At5g01430	465.5	3183.3	970.3	252.4	816.7	2393.4
172 At1g26660	chaperonin	Prefoldin chaperone subunit family protein	468.2	981.8	2049.1	3163.3	4386	16151.1
173 At3g25545	NOV		468.7	8086.4	1106.4	1544.8	3106.3	1941.8
174 At4g13750 175 Δ+1σ24490	ΝΟν ΟχαΔ	Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase family protein	470.1	2170.7	2/9.2	4445.9 5554.6	3029.1	3640.2
176 At2g45280	RAD51C	RAS associated with diabetes protein 51C	472.4	374.9	4753.8	3319.2	2930.6	10395.4
177 At5g11030	ALF4	aberrant lateral root formation 4	473.7	780.8	679.9	2806.5	17783.9	14511.5
178 At1g79730	ELF7	hydroxyproline-rich glycoprotein family protein	474.7	2597.2	198.8	1002.9	335.2	719.4
179 263422_s_at	budroloco	At2g17190;At2g17200	477.1	2325.8	556.5	452.1	7844	1729.6
180 ALSg55540	las1-like	las1-like family protein	482.7	6373.8	418.6	4597.8	4767.8	8480 7
182 At1g30240	1052 1110		482.9	3450.1	525.7	3897.9	3407.4	8321.2
183 262433_s_at		At1g47490;At1g47500	483.8	3499.4	1463.2	5410.6	1481.1	4794.1
184 At1g27760	SAT32	interferon-related developmental regulator family protein / IFRD protein family	492.8	2823.9	854.8	2144.6	2790.6	8013.5
185 At5g50780	ATPase	Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase family protein	495.6	31.5	1666.5	1063.3	5396.3	16702.1
186 Al4g30890 187 At1g29850	DNA-hinding	double-stranded DNA-binding family protein	495.9	4333.1	297.5	1939.3	597.4 699.5	1530.1 6981 9
188 At5g19400	SMG7	Telomerase activating protein Est1	501.1	166.8	788.7	1911.7	797.5	904.3
189 At1g66070	Translation in	Translation initiation factor eIF3 subunit	501.9	10631.9	921.2	2567.6	1594.3	2793.3
190 At3g54380	SAC3	SAC3/GANP/Nin1/mts3/eIF-3 p25 family	503.8	744.4	3562.8	895.7	363.3	9087.8
191 At1g48120	hydrolase	hydrolases;protein serine/threonine phosphatases	506.6	1722.8	295.6	5641.3	2372.3	2561.5
192 At5g08310	Tetratricoper	Tetratricopeptide repeat (TPR)-like superfamily protein	509.9	1072.2	944	16079.1	9483.3	13699.8
194 At1g04810	proteasome	26S proteasome regulatory complex, non-ATPase subcomplex, Rpn2/Psmd1 subunit	512.5	9803.7	261.5	2214.7	5790.7	5186.6
195 At2g27600	VPS4	AAA-type ATPase family protein	512.7	2707.3	515.3	1707.4	422.6	438.7
196 At1g32130	IWS1	Transcription elongation factor (TFIIS) family protein	517	2236	130.6	684.5	2395.8	2126.3
197 261872_s_at	лтна	At1g11520;At4g21660 ABC2 homolog 9	517.4	378.9	483.8	2006 1	4587.7	12/14.8
198 At2g40090	FCA gamma	flowering time control protein-related / FCA gamma-related	520.1	956.8	2379.5	7258.6	298.8	2453.2
200 At4g20330	Transcription	initiation factor TFIIE	Transcription	521.4	4753.3	412.1	405.1	3401.8
201 At4g02400	Utp	U3 ribonucleoprotein (Utp) family protein	522.6	8919.3	690.3	3735.3	1192.3	2926.1
202 At2g26590	RPN13	regulatory particle non-ATPase 13	528.3	7875.3	273.1	1002	872.5	1339
203 At3g03340	UNE6	LUC/ related protein	531.5	2961.9	1462	/05.9	1596.8	25/8.2
205 At3g56990	EDA7	embryo sac development arrest 7	532.2	3309.9	488	4834.4	1753.9	2310.3
206 245437_at		- · · · · · · · · · · · · · · · · · · ·	538.6	2369.6	834.8	3718.1	5209.1	17300.9
207 At3g19630	SAM	Radical SAM superfamily protein	540.6	3126.9	937.2	2222.4	866.7	5858.7
208 At5g05520	OMP85	Outer membrane OMP85 family protein	543.5	3180.9	270.5	2751.6	6064.7	2607.6
209 At4g24200	TFIIS	Transcription elongation factor (TFIIS) family protein	545.7	480.5	1443.2	2362.1	6143.7	6089.4
211 At5g13970	Anivi Tepeat	Anim repeat superraining protein	547.2	4235.6	1193.2	5718.2	4890.3	5756.9
212 At3g04500	RNA-binding	RNA-binding (RRM/RBD/RNP motifs) family protein	549.5	1878.4	564.6	1655.1	4358.6	3382
213 At3g19760	EIF4A-III	eukaryotic initiation factor 4A-III	550	3882.3	1090.4	3862.4	2975.9	838.2
214 At4g39850	PXA1	peroxisomal ABC transporter 1	550	1111.3	928	385.3	578.2	9209
215 ALIg31870 216 At5g04520	DUE455	Protein of unknown function DI IE455	551.2	3450.8 2046.4	202.5	21/3.1	3018.3	2764.9
217 At1g31220	transferase	Formyl transferase	556.8	7347.8	28.7	11186.8	2071.5	11546.7
218 At5g07950			557.8	830.2	193	2319.1	2046.2	4554.7
219 260418_s_at		At1g66590;At1g69750	559.5	1765.3	313.5	413.8	4348.4	4610.4
220 At1g01940	isomerase	Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein	560.5	11262.6	388.7	1934.3	1453.2	3796.4
221 At4g19440 222 Δt3g19670	PRP40B	ne-mRNA-processing protein 40B	563 5	916.9 46.8	299 506.8	11625.1	4024.8 3829.6	9832 7129 3
223 At2g47330	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	564.1	6524.6	142.2	1082.1	3798	3675.7
224 At1g72570	DNA-binding	Integrase-type DNA-binding superfamily protein	564.8	7904.7	15192.9	9711.3	4705.2	19222.9
225 At4g17830	M20/M25/M	Peptidase M20/M25/M40 family protein	565.9	5947.6	1988.1	1344.2	246.8	1338.8
226 At1g75510	Transcription	initiation factor IIF	Transcription	566.5	3978.9	1737	2650.4	1594.7
227 AL3g19740 228 At1e42440	nyurolase	P-loop containing nucleoside tripnosphate hydrolases supertamily protein	567.2 570 1	51.6 5252 1	3327.5	4362.6	1475.7 4031 9	0940.1 898 1
229 At4g34910	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	571	5993.2	839.2	4496.6	2395.2	7905.4
230 At2g23890	nucleotidase	HAD-superfamily hydrolase, subfamily IG, 5'-nucleotidase	571.1	2926.2	56.1	3759.5	1878.7	3195.4
231 At5g19910	MED31	SOH1 family protein	571.8	4978.1	1316.7	4906.9	1586.2	1189
232 At5g17270	transferase	Protein prenylyltransferase superfamily protein	572.5	2780.1	263.1	5429.8	2059.8	3875.5
233 AL3805530	NELOA	regulatory particle triple-A Arrase SA	5/2.8 572 9	5190.4 599.7	2193.9 1136 s	348.7 4760 4	2722.5 4377 8	15532.1 7135 g
235 At5g56090	COX15	cytochrome c oxidase 15	578.2	3869.1	571.6	2065.4	853.4	5870.5
236 At1g13810	II-like	Restriction endonuclease, type II-like superfamily protein	581.7	2081.6	111.3	8767.6	6966	475.7

		Block et al. Plant Cell (2014) 10.1105/tpc.114.125807						
Locus	Alias	Function cullin4	MR(all) 1	VR(tissue)	MR(abiotic)	MR(biotic)	MR(hormone N	1R(light) 3172 7
237 At3g40210 238 At4g20060	EMB1895	ARM repeat superfamily protein	584.5	167.8	1310.5	3143.7	9512.5	17546.6
239 At1g01930	zinc finger	zinc finger protein-related	587.7	2124.7	149.8	7591.8	1517.6	7418.4
240 At3g11450	DnaJ domain	DnaJ domain ;Myb-like DNA-binding domain	590.8	877.4	1430.5	1654.1	6434.4	9236.2
241 249888_S_a 242 At1g80040		Al5g22480;Al5g37340	591.2	2842.6	958.3 162.8	1484.8	7939.9	4088.6
243 At1g52730	Transducin/V	'Transducin/WD40 repeat-like superfamily protein	591.8	3501.4	720.8	4068.8	3017.2	2281.3
244 At4g01660	ATH10	ABC1-like	592	4997	500.3	2283.3	3286.6	9018.1
245 At1g65020	kinaco	Protoin kinaso suporfamily protoin	592.2	11196.4	388	2082	3812.2	2710.9
247 At4g02570	CUL1	cullin 1	601.7	4208.9	222.5	65.5	954.4 1142.6	454.9
248 At5g09420	TOC64-V	translocon at the outer membrane of chloroplasts 64-V	601.9	6350.8	135.7	4703.9	8242.8	1174.1
249 At3g17910	SURF1	Surfeit locus 1 cytochrome c oxidase biogenesis protein	602	2153.7	690.8	3340.6	2608.3	1682
250 At3g12140	EML1 C-terminal	Emsy N Terminus (ENT)/ plant Tudor-like domains-containing protein zing finger (MVND type) family protein / programmed cell death 2 C-terminal domain-cor	603.1	1396.4	90 564 5	2748.3	2081.8	6210.3
252 At3g51100	e terminar		604.9	946.5	2459.1	906.1	12829.2	1649.8
253 At5g08510	PPR	Pentatricopeptide repeat (PPR) superfamily protein	605.5	104.3	2141.5	6429.6	10566.2	2211.7
254 At3g05360	RLP30	receptor like protein 30	607.8	2124.6	397.4	635	1757.2	3309.4
255 At3g03740 256 At1g66750	BPM4 CDKD·2	BIB-POZ and MATH domain 4 CDK-activating kinase 4	608.3 609.8	2874.9	31/2.4 2496.6	846.7 9783 3	395.6 1016 7	2263.9 9254.4
257 At2g47300	nuclease	ribonuclease Ps	611.8	997.5	1656.9	14909.9	7894.2	8802.6
258 At2g37250	PADK1	adenosine kinase	613.9	6961	603.4	1504.2	6749.8	1136.2
259 At5g15640	Mitochondria	Mitochondrial substrate carrier family protein	616.2	1431.5	2129.8	2213.6	207.8	2639.2
260 Atig06/10 261 266932 s at	l etratricope	attaricopeptide repeat (TPR)-like superfamily protein	617.1	1540.5 7398 5	758.1 96.8	14528.6 6975.1	5508.7 8170.6	4318.2
262 At3g47530	PPR	Pentatricopeptide repeat (PPR) superfamily protein	620.3	953.7	840.4	8555	7249.1	8571.9
263 At5g38890	OB-fold-like	Nucleic acid-binding, OB-fold-like protein	622.6	4757.1	516.4	2834	6170.5	1558.9
264 At4g27680	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	624.5	4487.2	1017.8	1019.7	6026.4	4254.7
265 At4g26600 266 At1g50140	transferase	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein P-loop containing nucleoside triphosphate bydrolases superfamily protein	625.5	5498.6 475.8	398.4 1527 3	5598.1 3134 1	1970.8	7343 8211 2
267 At1g55150	helicase	DEA(D/H)-box RNA helicase family protein	629.3	5568.6	30	4613.7	3078	5884.6
268 At5g27760	Hypoxia-resp	Hypoxia-responsive family protein	629.8	7101.4	1218	898.9	2809.9	899.6
269 At4g00090	Transducin/V	Transducin/WD40 repeat-like superfamily protein	630.7	12996.5	113.7	2622.5	2170.5	3841.1
270 At1g20300 271 At3g01610	emb1354	cell division cycle 48C	630.8	5275.7	322	4227.8	3310.8	4343.3
272 At5g42970	FUS8	Proteasome component (PCI) domain protein	631.4	7777.2	642.8	1746.6	347.7	2215.5
273 At5g14770	Tetratricope	Tetratricopeptide repeat (TPR)-like superfamily protein	633.6	1497.7	281.7	8613	18589	6368.2
274 At4g28450	nucleotide bi	nucleotide binding;protein binding	637.4	6777	149.8	4318.6	4835.8	467.9
275 Al5g53000 276 At4g32660	AME3	Protein kinase superfamily protein	637.7	5009.8	2198.7 914.8	10237.1	871	6922.5
277 At3g11270	Mov34	Mov34/MPN/PAD-1 family protein	640	11005.8	953.4	913	3579	1219.1
278 At1g09100	RPT5B	26S proteasome AAA-ATPase subunit RPT5B	640.3	7401.7	1592.5	711.5	4201.1	2128.3
279 At1g63780	IMP4	Ribosomal RNA processing Brix domain protein	642.6	7087.3	184	4530.1	3813.2	1971.2
281 At4g03156	GTPase	small GTPase-related	648.5	1754	2253	9160.1	13123.6	15293.7
282 At1g71210	PPR	Pentatricopeptide repeat (PPR) superfamily protein	649.4	2512	377.5	4002.3	3526.8	2158
283 At5g11310	PPR	Pentatricopeptide repeat (PPR) superfamily protein	650.6	1598.3	147.1	4347.7	5860.9	4633.3
284 At3g15460	Ribosomal RI	Kibosomai KNA processing Brix domain protein Spc97 / Spc98 family of spindle pole body (SBP) component	651.9	6264.4	897.9	5810.4	5430 6071 6	1/03.9
286 At5g18420	501	Spc377 Spc36 family of spinule pole body (3517 component	658.8	6816.8	124.8	1812.1	4562.1	1643.7
287 At4g03260	Outer arm dy	Outer arm dynein light chain 1 protein	659.1	1110	711.5	6036.4	844.4	5283.9
288 At2g33730	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	660.3	6135.9	501.6	547	1660.3	1187.9
289 253890_s_at 290 At5ø15700	DNA	At4g27585;At5g54100 DNA/RNA polymerases superfamily protein	662 3	5016.2	293.4 183.1	682.5 11418 2	2436.3 14286 1	1526
291 At4g00170	VAMP	Plant VAMP (vesicle-associated membrane protein) family protein	662.5	1070.6	2710.1	2835.7	1553.2	1470.7
292 At2g39970	PXN	Mitochondrial substrate carrier family protein	664.4	394.9	7547.8	239.1	1995.1	13850.1
293 At5g49930	emb1441	zinc knuckle (CCHC-type) family protein	665.4	2232	239.5	661.8	4508.5	4091.2
295 At2g42680	MBF1A	multiprotein bridging factor 1A	667.8	4808.1	1165.3	4330.0	1578.9	1044
296 At5g17370	Transducin/V	Transducin/WD40 repeat-like superfamily protein	668.8	778.8	2074.7	8087.7	13718.4	7892.9
297 At2g31740	transferase	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	670.2	3236.3	431.6	5182.9	3547.8	3124
298 At1g14560	Mitochondria	Mitochondrial substrate carrier family protein	671.5	2954.1	133.5	5242.9	1211.5	3288.7
300 At1g51600	ZML2	ZIM-LIKE 2	676.3	4855.8	3680.7	1972.3	1181.2	9586.2
301 At5g55070	transferase	Dihydrolipoamide succinyltransferase	676.8	209.9	3665.6	1001.3	2781.4	3571.4
302 At4g01880	transferase	methyltransferases	678.9	5317.7	1010	2328.5	489.5	2652.2
303 At3g15660	GRX4 Trynsin with	giutaredoxin 4 Trynsin family protein with PDZ domain	683.5	3753.9	891.2 1416 3	481.6 9378 7	2188.6 4643.2	16089.4
305 At3g58180	ARM repeat	ARM repeat superfamily protein	683.6	5072.6	754.4	3683.1	1176.4	214.5
306 At1g54270	EIF4A-2	eif4a-2	684.6	7521	941.9	1301	2038.8	624
307 At2g40700	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	685.1	4967.2	794.9	2829.1	2502.1	12897
309 263532 s at	:	At2g24990:At5g37350	687.6	4536 5	/1/.9	599.1 2168 7	840.5 1779.5	292.4 1685 4
310 At2g43235			687.6	4287.3	928.7	1733.3	3615	20489.2
311 At5g09840	hydrolase	Putative endonuclease or glycosyl hydrolase	688.9	6525.5	427.9	6423.4	2625.3	5252.4
312 At5g20200	nucleoporin	nucleoporin-related P-loop containing nucleoside triphosphate hydrolasos suporfamily protoin	688.9	4079.5	1022.5	2859.4	3175.2	1013.4 8056 5
314 At3g29010	ligase	Biotin/lipoate A/B protein ligase family	690.6	1594.5	422.1 1520	4094 14144.4	7294.4	18241.5
315 At3g17240	mtLPD2	lipoamide dehydrogenase 2	694.5	638.9	6520.8	534	1067	761.2

		Block et al. Plant Cell (2014) 10.1105/tpc.114.125807						
Locus 316 At4ø01320	Alias STE24	Function Pentidase family M48 family protein	MR(all) 694 5	MR(tissue) 8353 5	MR(abiotic)	MR(biotic) 587 5	MR(hormonel 2932.9	VIR(light) 637.9
317 At1g29940	NRPA2	nuclear RNA polymerase A2	694.5	5915	891.4	2399.8	1994.3	2813.8
318 At1g20920	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	696.1	279	1218.5	6579	259	1714.9
319 At1g60650	RZ-1b	RNA-binding (RRM/RBD/RNP motifs) family protein with retrovirus zinc finger-like domain	698.3	3448.2	151.6	2911.8	2988.3	2710.2
320 At2g02090	ETL1 PRPACC	SNF2 domain-containing protein / helicase domain-containing protein	698.3	2847.7	2869.6	1167.5	164.4 398.4	16826.7
321 At3g19840	UTP11	embryo sac development arrest 14	699	5749.9	275.1	3756.3	918.6	2372.8
323 At3g06480	helicase	DEAD box RNA helicase family protein	701.8	2812.4	1496.9	1999.2	2310.3	8012.1
324 At5g13030			702.7	1409.6	689.9	1287.3	513.4	1601.9
325 At5g12020	HSP17.6II	17.6 kDa class II heat shock protein	703	2278.3	604.1	3006.2	6346	15795.9
326 At1g71850	hydrolase	Ubiquitin carboxyl-terminal hydrolase family protein	705.3	6738.2	127.8	6181.3	4076.5	3163.3
327 AL2g44510	DUF2040	Coiled-coil domain-containing protein 55 (DUF2040)	705.7	3606.6	873.7	258.1	8490.8	3976.8
329 At2g32600	glycoprotein	hydroxyproline-rich glycoprotein family protein	706.9	7311.2	407.4	775.5	1422	3387.3
330 At1g68370	ARG1	Chaperone DnaJ-domain superfamily protein	709.5	2271.4	1403.1	3369.7	1236.4	3854.3
331 At1g27050	homeobox 5	4homeobox protein 54	710.2	4845	2157	4259.8	6160.8	2334.5
332 At5g17890	DAR4	DA1-related protein 4	712	1116.3	960.4	3522.4	1806.4	6289.1
333 At1g60080	nuclease	3'-5'-exoribonuclease family protein	713.1	1062.9	1540.1	6291.2	6650.1	11063.1
335 At3g02860	zinc ion bind	izinc ion binding	714.5	1435.2	811.5	2938.4	5613.4	11444
336 At1g28060	splicing	Pre-mRNA-splicing factor 3	715	7607.9	172	2866.3	2663.3	2842.2
337 At4g18260	Cytochrome	ICytochrome b561/ferric reductase transmembrane protein family	717.5	646.3	1238.6	5258.2	5515.1	4082.2
338 At1g56570	PGN	Tetratricopeptide repeat (TPR)-like superfamily protein	718.4	2346.3	6839.3	8359	294.6	9606
339 At1g10320	Zinc finger C	- Zinc finger C-x8-C-x5-C-x3-H type family protein	721.2	498.2	890.5	3922	12871.4	9136.2
340 At5g48970	Mitochondri	a Mitochondrial substrate carrier family protein	723.3	4572.9	13.3	6887.1	1057.2	3025.7
341 ALSg58850	transferase	nolyrihonucleotide nucleotidyltransferase nutative	725.5	3186 7	980.4	07.9 4849 7	2914.9	5037.9
343 At5g19300	transferase	polynoondeleotide nacleotidytransferase, patative	727.7	55551.1	932.3	2446.9	1301.7	5874.8
344 At5g41150	UVH1	Restriction endonuclease, type II-like superfamily protein	728.6	2929.5	1006.7	9170	566.6	5199.8
345 At4g32450	PPR	Pentatricopeptide repeat (PPR) superfamily protein	735.3	4234.4	135.5	11935.7	1745.5	16386.3
346 At4g04790	Tetratricope	r Tetratricopeptide repeat (TPR)-like superfamily protein	737.3	5447.5	334.7	3127.6	2188.3	9260.2
347 At2g34570	MEE21	PIN domain-like family protein	737.8	7316.7	604.3	6976.7	3302.1	3377.9
348 At1g53200	EDE1 1	aukarvatic relassa factor 1.1	740.1	3582.b	265.9	4512.9	5230.8 2209 6	32/6.1
350 At2g03270	DNA-binding	DNA-binding protein, putative	742.1	7296.7	892.2	1728.7	5359.3	10819
351 At2g39480	PGP6	P-glycoprotein 6	746.7	100.4	1612	2619.9	1542	3998.7
352 At4g30150			747.8	3215.4	848	4494	2310.4	2823.1
353 At5g44150			748.6	3907.5	696.6	2623.5	801.8	8855.3
354 At1g63070	PPR	pentatricopeptide (PPR) repeat-containing protein	751.2	8541.9	5146.1	11279	1041.9	13774.2
355 At3g03880	DUF1639 OB-fold-like	Protein of Unknown function (DUF1639)	752.8	2567.1	1309.8	3134	1/830.7	20091.6
357 At2g16460	DUF1640	Protein of unknown function (DUF1640)	757.3	5796.8	415.6	1376.6	2732	2712.3
358 At1g78930	transcription	Mitochondrial transcription termination factor family protein	758.8	3493.4	68.7	12719.1	11244.6	1802.6
359 At3g53940	Mitochondri	a Mitochondrial substrate carrier family protein	760.3	6787.9	44.3	12219.5	11376.5	11275.6
360 At2g04400	Aldolase-typ	cAldolase-type TIM barrel family protein	763	607.6	2853.3	593.5	872.9	1510.8
361 At5g09390	CD2-binding	CD2-binding protein-related	765.6	4053.2	124.3	1445.6	2543.7	9779.8
362 At1g/2560	PSD	ARM repeat superfamily protein	767.4	1168.2	549.7 1189.6	130/0./	512.7 20942 7	6948.3 8632.2
364 At5g11430	S-II	SPOC domain / Transcription elongation factor S-II protein	769.1	4339.1	2998.3	7002.4	8509.4	11487
365 266888_s_a	t	At1g02880;At2g44750	769.7	463	486.5	2865.1	6250.5	9693.1
366 At4g20010	PTAC9	plastid transcriptionally active 9	773.6	3358.5	2662.1	5034.9	1459.3	1089.8
367 At2g34160	DNA/RNA-bi	r Alba DNA/RNA-binding protein	774.9	2094.9	815.9	2231.5	12329.5	5791.1
368 At1g06720	hydrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	775.9	5694.9	802.7	3171	1452	5624.3
369 At5g53440	CCHC-type	zinc knuckle (CCHC-tyne) family protein	781.8	2222.5	1123.5 3551.8	1535.8	1312 721 5	8/26./
371 At1g75200	SAM	flavodoxin family protein / radical SAM domain-containing protein	788.4	8767.6	874.3	3038	4262.2	232.4
372 At4g15850	RH1	RNA helicase 1	791.4	4062	341.8	5415.6	2496.5	19987.2
373 At3g27700	RRM	zinc finger (CCCH-type) family protein / RNA recognition motif (RRM)-containing protein	793	355	2124.6	2853.4	6558	7130.7
374 254593_s_a	t	At4g18900;At4g18905	793.3	1357.5	1362.7	4989.9	2749.3	4573.5
375 At5g53770	transferase	Nucleotidyltransferase family protein	793.7	6785.2	509.1	8926.7	204.4	5360.1
376 At1g03860	PHB2 PNA polymor	prohibitin 2 r DNA binding: DNA directed RNA polymerases	795	//01.1	445.4	3027.6	1472	2007 7
378 At3g27550	CRM	RNA-binding CRS1 / YhbY (CRM) domain protein	790.4	4586.1	53.4	4468.6	14747.4	4533.8
379 At1g17680	TPR	tetratricopeptide repeat (TPR)-containing protein	800.9	877.4	1744.2	1011.7	3853.8	3672.3
380 At1g47870	E2FC	winged-helix DNA-binding transcription factor family protein	801.4	7170.8	947.4	799.9	1318.5	8435.4
381 258259_s_a	t	At3g26820;At3g26840	803.6	1705.1	552.7	434.8	2936.4	8497.1
382 At3g05090	LRS1	Transducin/WD40 repeat-like superfamily protein	804.7	1275.2	1209.8	661.1	1097.8	2746.5
383 At5g52200	I-2 Ku70 hindin	phosphoprotein phosphatase inhibitors	805.4	2/38.1	4506.7	909.6	6389.4	/484.5
385 266389 s at	t	At2g31580.At2g32320	806.9	0472.5 81 1	1378.2	1142 3	4335.5	2172 3
386 At3g04130	Tetratricope	r Tetratricopeptide repeat (TPR)-like superfamily protein	809	2384	267.3	5292	4757.9	11128.5
387 At5g63690	OB-fold-like	Nucleic acid-binding, OB-fold-like protein	809.3	1050.9	1291.9	5546.4	4130.3	15384.4
388 At5g13310			810.1	3631.5	1618.3	636.2	6606.5	6468.3
389 At1g80950	transferase	Phospholipid/glycerol acyltransferase family protein	811	3886.8	6968.6	1680.2	1836.4	7166.7
390 At5g14950	GMII transducio	goigi aipna-mannosidase II transducio family protein / WD-40 repeat family protein	811.9	818.2	5102.7	664.6	778.2	3252.6
392 253415 at	cransudelli	transudent raining protein / wo-40 repeat raining protein	813.1 813.4	0008.1 4435 9	384.1 207 9	5979.4 2094 २	5044.7 892 5	939.4 16102 5
393 At4g32050	neurochondi	r neurochondrin family protein	815.1	4924.9	343.3	8947.9	8803	13057.4
394 At5g67080	MAPKKK19	mitogen-activated protein kinase kinase kinase 19	815.3	1919.2	4467.5	1437.7	1866.8	13329.5

1	A .line	Block et al. Plant Cell (2014) 10.1105/tpc.114.125807	MD(-11)	4D/4:00.00)				4D/I:-b+)
395 At2g44820	Allas	Function	816.7	3907	2497.3	4177.1	2599.2	10552
396 At1g62740	Hop2	stress-inducible protein, putative	817.7	7043.9	1392.6	3154.1	90.9	13865.1
397 At1g15420			818.7	8420.8	118.5	9290.9	2713	883.8
398 At4g12750	transcription	Homeodomain-like transcriptional regulator	824.2	3946.9	1007.4	6490.5	4808.4	2504.9
399 At5g58020	TtcA	2 thiocutiding tPNA biosynthesis protoin TtcA	826	6349.1	26.5	1443.2	14785.1	1402.4
400 Atig/61/0 401 At3g16840	hvdrolase	P-loop containing nucleoside triphosphate hydrolases superfamily protein	830.9	7339.1	994.9	4835.7	360.9	2412.3
402 267162_s_at	t	At2g05140;At2g37690	832.1	4113.5	953.5	4214.9	2992.3	1574.5
403 At4g25730	transferase	FtsJ-like methyltransferase family protein	833.1	8110.4	560.6	2189.1	1610.4	114.1
404 At3g06940	transposable	e transposable element gene	835.3	995.8	1838.4	562.6	4205.9	7637.2
405 At3g62450	Tatustuisana	"Tetrateiner entide and est (TDD) like europfensik, mestein	836.4	4789.2	2273.9	660.4	2742.9	2202.2
406 AL3860980 407 At1g09190	Tetratricope	r Tetratricopeptide repeat (TPR)-like superfamily protein	830.8	1684.2	2822.9	4941.7 6284.4	1670.5 5505.2	11456.7
408 At4g32430	PPR	Pentatricopeptide repeat (PPR) superfamily protein	839	1476.2	970	8881.5	10268.4	5686.3
409 At4g24820	PCI	26S proteasome, regulatory subunit Rpn7;Proteasome component (PCI) domain	839.3	9760.4	576	411.5	4238.6	342
410 249616_s_at	t	At5g37440;At5g37750	840.5	3613.7	347.8	4366.2	14861	673.9
411 At4g02560	LD	Homeodomain-like superfamily protein	842.3	3513.5	489	2274.3	560.9	11051.4
412 At5g65850	F-DOX	F-box and associated interaction domains-containing protein	842.5	4682.3	214.2	36/2.2	9236.9	8/0/.3
413 At3g10030 414 At1g11780	oxygenase	oxidoreductase. 20G-Fe(II) oxygenase family protein	844.4	3058.3	3122.5	15533.9	544.6	7914.3
415 At2g34357	ARM repeat	ARM repeat superfamily protein	845.2	7898.6	895.2	4039.7	1428.8	3632.1
416 At1g07840	Sas10	Sas10/Utp3/C1D family	846.2	10886	1349.4	6299.2	2111	8411
417 At1g11800	phosphatase	endonuclease/exonuclease/phosphatase family protein	848.5	11441.5	197.7	6702.6	11064.8	4654.3
418 262227_s_at	t	At1g53750;At1g53780	848.9	3950.7	2052	295.8	1953.7	1038.1
419 At1g48040	Protein phos	Protein phosphatase 2C family protein	854.1	3936./	952.6	2855.5	3432.5	18131.6
420 At1g23220	Ribosomal R	NRibosomal RNA processing Brix domain protein	856 5	9437 3	336	3905 5	4400.3	1544 7
422 At5g39840	helicase	ATP-dependent RNA helicase, mitochondrial, putative	859.5	6193.3	724.9	7303.2	1739.1	6563.9
423 At3g10650	NUP1		861.1	2694.8	742.6	3793.7	1566.8	6691.7
424 255093_s_at	t	At4g08580;At5g17900	861.8	2708.6	392.7	1444.6	268.5	10849.7
425 At2g34780	MEE22	maternal effect embryo arrest 22	861.9	6305.5	490	11377.8	3726.4	2886.4
426 At1g15440	PWP2	periodic tryptophan protein 2	862.8	8173.7	465.4	4717.5	4576.9	382.3
427 At4g25540	kinase	S-locus lectin protein kinase family protein	864 5	4268.8	497.5	6174.8	2685.6	12908.4
429 At5g57280	RID2	S-adenosyl-L-methionine-dependent methyltransferases superfamily protein	865	8319.6	677.7	3391.8	2110.7	1592.3
430 At5g16860	Tetratricope	Tetratricopeptide repeat (TPR)-like superfamily protein	867.1	5908.9	1170.3	7258.8	2927.6	2683.7
431 At5g11520	YLS4	aspartate aminotransferase 3	872.9	1837.4	3228.4	419.5	2221.9	1627.7
432 At1g32530	RING	RING/U-box superfamily protein	874.5	2586.8	317.4	461.4	2720.9	5827.7
433 At2g02730	DUF1664	Protein of unknown function (DUF1664)	874.8	998.8	417	1611.2	1259 9	16585
434 At4g10710	SAP12	zinc finger (AN1-like) family protein	880.5	4464.5	1064.1	2030.7	6061.4	11843.9
436 At1g09290			886.6	3264.7	1882.1	9326.4	5128.2	8203.5
437 AtMg00510	NAD7	NADH dehydrogenase subunit 7	886.7	3271.6	1473.1	2328	1337.4	14686.2
438 At5g14440	SURF2	Surfeit locus protein 2 (SURF2)	893.2	7924.3	1901.2	3052.3	1808.1	3259
439 At1g55500	ECT4	evolutionarily conserved C-terminal region 4	895	1669.1	1474.2	3981.9	1919.6	1812.1
440 AL3g19360 441 Δt4σ23910	сссн-туре	zinc inger (CCCH-type) family protein	895.0	6108 5	313.4	4968.9 8779.6	4597.7 7978 9	1590.9 9145 5
442 At4g32240			898	5620.9	834.9	6710.7	6879.2	1906.8
443 At2g47410	WD40	WD40/YVTN repeat-like-containing domain;Bromodomain	900.3	308.5	1064.5	2879.3	859.9	4847.5
444 257320_at			901.9	658.1	858.5	6402.5	15094.7	16633.6
445 248743_at	000		905.1	7192	299.6	2821.8	4065.5	2845.9
446 ALIg79540 447 Δt2σ18900	Transducin/	Pentatricopeptide repeat (PPR) superfamily protein	906.7	3301.7 4545.4	903.1 790.7	4603.2	6148.2	948.3
448 At1g56350	Peptide chai	r Peptide chain release factor 2	911.6	2738.1	2253	4342.7	4594.7	7960.9
449 At5g12190	RNA-binding	RNA-binding (RRM/RBD/RNP motifs) family protein	912.4	7945.5	1107.3	1306.5	8207.8	907.1
450 At3g46460	UBC13	ubiquitin-conjugating enzyme 13	914.1	8453.4	855.2	6890.2	1563.6	4182.8
451 265941_s_at	t MDC2 4	At2g19490;At3g32920	914.9	4446.7	751	4587	3934.8	4057.1
452 At1g16010	MAK16	magnesium transporter 2 MAK16 protoin related	915.5	1080.7	862.1 221 4	6542.4 5066.4	1512	6291.3 5921.1
454 At1g29150	RPN6	non-ATPase subunit 9	916.6	8423.5	1379.6	831.8	4486.7	3968.1
455 At2g30800	HVT1	helicase in vascular tissue and tapetum	919	3175.1	347.5	2583.4	150.2	389.9
456 At1g55040	Ran-binding	zinc finger (Ran-binding) family protein	919.5	2127.5	8721.3	2358.4	3090.7	14551.8
457 At1g64600	transferase	methyltransferases;copper ion binding	921	3499.5	486.4	3712.7	11142.4	14848.9
458 At5g45140	NRPC2	nuclear RNA polymerase C2	921.9	3893.1	289.2	7750.9	1574.5	16124.4
459 AL5g14250	RING	RING/IL-box superfamily protein	925.8	3279.4	433.8	2824.3	4242 5	7371.4
461 At2g40430			933.7	7856.7	1284.2	1941	917.3	4132.2
462 At4g19610	nucleotide b	i nucleotide binding;nucleic acid binding;RNA binding	934.3	8477.7	603	6419.3	353.4	4203.6
463 At5g67440	NPY3	Phototropic-responsive NPH3 family protein	935.3	166.3	6363.5	5493.1	5413.4	22549.4
464 At3g59630	DPH2	diphthamide synthesis DPH2 family protein	937.4	3415.8	1905.2	5038.5	2876.5	2787.6
465 At3g06720		Importin alpha isotorm 1	938.3	5376.1	759	2030.3	3991	10886.5
400 ALSB22170	transferase	iai - ieu eiongaleu nypololiyis 5 transferases:tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferases	940.6 941 6	1338.7 3480	030 75 1	15258 2	1358.8 3551.2	3162.8
468 At5g35680	OB-fold-like	Nucleic acid-binding, OB-fold-like protein	941.8	5644.2	2361.9	1342.5	15807.6	960.9
469 253596_s_at	t	At4g30730;At4g30750	941.9	5529.2	1076.4	97	2154.2	2248
470 At4g28600	NPGR2	no pollen germination related 2	946.9	9882.2	764.8	547.6	1319.2	1629.2
471 At5g39040	TAP2	transporter associated with antigen processing protein 2	947.2	10194.5	1154.4	3498.3	166.7	3367.6
472 At3g10530	I ransoucin/\	r mansuuun / wD40 repeat-like superfamily protein Pentatricopentide repeat (PPR) superfamily protein	948.5	6910.3 2415 2	401.6	5152 1755 2	4553	3165.8 17/12/1 2
		· characterepetitie repeat (r r h) superiorning protein	550.0	2913.2	545.4		11331.1	12404.2

		Block et al. Plant Cell (2014) 10.1105/tpc.114.125807						
Locus	Alias	Function	MR(all)	MR(tissue)	MR(abiotic)	MR(biotic)	MR(hormone N	/IR(light)
474 At3g04800	TIM23-3	translocase inner membrane subunit 23-3	951	2331.7	9468.8	13694.3	17096	8353.7
475 At1g26340	CB5-A	cytochrome B5 isoform A	952.7	10515.5	936.7	1789.1	8643.5	5357.2
476 At5g50840			953	6703.9	2911.1	1773.4	1208.2	6337.4
477 At1g30070	SGS	SGS domain-containing protein	953.9	2727.2	2056.7	3628.2	2066.5	20230.1
478 At3g01160			954.4	10862.6	252	3437.3	3062.4	2871.7
479 At5g53800			955.2	2797.8	647.2	1132	2171.9	8802.6
480 259937_s_a	t	At1g71330;At3g13080	957.4	172.3	1868.2	3000.7	3901.7	904.2
481 At2g43650	Sas10	Sas10/U3 ribonucleoprotein (Utp) family protein	959.8	8475.7	551.4	8622.5	1529.5	5000.3
482 At5g46680	PPR-like	Pentatricopeptide repeat (PPR-like) superfamily protein	960.1	1070.3	979.1	8715.7	17474.2	15906.9
483 At3g13330	PA200	proteasome activating protein 200	960.9	5218.6	5342.1	593	204.8	992.4
484 At4g04940	transducin	transducin family protein / WD-40 repeat family protein	963.9	7807.5	880.5	3680.3	5160.4	1058.9
485 At5g65720	NIFS1	nitrogen fixation S (NIFS)-like 1	964.9	1575.5	3341.9	2866.9	3326.6	7118.8
486 At5g37370	SRL1	PRP38 family protein	969.7	198.4	4453	203	2494.4	12497.3
487 At5g60590	DHBP syntha	a:DHBP synthase RibB-like alpha/beta domain	970.4	62.2	3469.5	4842.4	3307.7	6367.6
488 At1g80550	PPR	Pentatricopeptide repeat (PPR) superfamily protein	972.9	2789.7	359.4	6739.1	4377.1	12173.6
489 267229_s_a	t	At2g44070;At5g38640	974.3	6219.1	2658.4	2650.2	131.2	10273.2
490 262306_s_a	t	At1g70980;At5g56680	975.1	9957.1	898.1	1794.4	1993	322.4
491 248517_at		At5g50550;At5g50650	979.1	2618.6	4745.6	3983	4128.9	4491.9
492 At1g49880	Erv1	Erv1/Alr family protein	979.8	1631.4	3230.5	10079.3	5078	21122.1
493 At1g16280	SWA3	RNA helicase 36	980.8	7343.6	344.6	8251.6	4492.5	5168.2
494 At3g52220			982.4	448.2	4037.6	2015.8	639.1	4210.4
495 At1g77840	IF2/IF5	Translation initiation factor IF2/IF5	985.8	10187.1	383	780.6	1190.5	1586.8
496 At4g37670	NAGS2	N-acetyl-l-glutamate synthase 2	987.1	4161.9	6492.4	1285.7	191.6	20622.9
497 At3g54980	PPR	Pentatricopeptide repeat (PPR) superfamily protein	989.1	4436.6	1053.6	5079.1	2199.4	422.2
498 At5g52070	Agenet	Agenet domain-containing protein	992.3	217.6	1446	961.9	4848.8	18634.2
499 At1g20575	DPMS1	Nucleotide-diphospho-sugar transferases superfamily protein	992.5	8115.5	679.7	276.6	2161.6	6273.5
500 At5g13750	ZIFL1	zinc induced facilitator-like 1	993.7	2985.3	1242.3	1377.4	3871.8	3490.4