3,020 research outputs found

    Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    Get PDF
    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of DeD_e=931.2 cm1^{-1} which agrees very well with recent experimentally derived estimates DeD_e=929.7±2\pm 2~cm1^{-1} [Science, 324, 1548 (2009)] and DeD_e=934.6~cm1^{-1} [Science, 326, 1382 (2009)]], as well the best composite theoretical estimates, DeD_e=938±15\pm 15~cm1^{-1} [J. Phys. Chem. A, 111, 12822 (2007)] and DeD_e=935.1±10\pm 10~cm1^{-1} [Phys. Chem. Chem. Phys., 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [Science, 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 11Σg^1\Sigma^-_g state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schr\"odinger equation in small molecules

    Dinotefuran and Piperonyl Butoxide Mixture for The Extermination and Prevention of Ctenocephalides Canis and Ctenocephalides Felis Felis In Dogs And Cats

    Full text link
    Ctenocephalides canis and Ctenocephalides felis felis are insects which are among the most common ectoparasites of common household dogs and cats. Flea killers have been developed for decades to counter this worldwide pest. It is a never-ending battle because of the continuous genetic resistance presented by the pest. In the present study, we applied a mixture of the pesticide Dinotefuran (26% w/v) and the synergist Piperonyl butoxide (6% w/v) to dogs (Solpreme Dogtrade and cats (Solpreme Cattrade) infested with the fleas via ldquoSpot onrdquo method. The treatment exterminated all of the fleas within 3 days (100%, plt 0.001). Re-infestation after 10 days caused an increase in the number of fleas, yet most of the effect lasted for at least 30 days. Further tests showed that the treatment is safe, water resistant, and has a long shelf life. The development of this novel mixture of substances provides an effective, safe means in the struggle with the continuous development of resistance to pesticides among major skin parasites

    Phosphorus limitation of aboveground production in northern hardwood forests

    Get PDF
    Forest productivity on glacially derived soils with weatherable phosphorus (P) is expected to be limited by nitrogen (N), according to theories of long-term ecosystem development. However, recent studies and model simulations based on resource optimization theory indicate that productivity can be co-limited by N and P. We conducted a full factorial N × P fertilization experiment in 13 northern hardwood forest stands of three age classes in central New Hampshire, USA, to test the hypothesis that forest productivity is co-limited by N and P. We also asked whether the response of productivity to N and P addition differs among species and whether differential species responses contribute to community-level co-limitation. Plots in each stand were fertilized with 30 kg N·ha−1·yr−1, 10 kg P·ha−1·yr−1, N + P, or neither nutrient (control) for four growing seasons. The productivity response to treatments was assessed using per-tree annual relative basal area increment (RBAI) as an index of growth. RBAI responded significantly to P (P = 0.02) but not to N (P = 0.73). However, evidence for P limitation was not uniform among stands. RBAI responded to P fertilization in mid-age (P = 0.02) and mature (P = 0.07) stands, each taken as a group, but was greatest in N-fertilized plots of two stands in these age classes, and there was no significant effect of P in the young stands. Both white birch (Betula papyrifera Marsh.) and beech (Fagus grandifolia Ehrh.) responded significantly to P; no species responded significantly to N. We did not find evidence for N and P co-limitation of tree growth. The response to N + P did not differ from that to P alone, and there was no significant N × P interaction (P = 0.68). Our P limitation results support neither the N limitation prediction of ecosystem theory nor the N and P co-limitation prediction of resource optimization theory, but could be a consequence of long-term anthropogenic N deposition in these forests. Inconsistencies in response to P suggest that successional status and variation in site conditions influence patterns of nutrient limitation and recycling across the northern hardwood forest landscape

    Soil nitrogen affects phosphorus recycling: foliar resorption and plant–soil feedbacks in a northern hardwood forest

    Get PDF
    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P , 0.01) and proficiency (P ¼ 0.01) increased with soil N content to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain based on single-element limitation, but follows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the O horizon: P resorption was high where resin-available P was low in the Oe (P , 0.01 for efficiency, P , 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P , 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the O horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem

    H2O contents and hydrogen isotopic composition of apatite crystals from L, LL5-6 ordinary chondrites.

    Get PDF
    第3回極域科学シンポジウム/第35回南極隕石シンポジウム 11月30日(金) 国立国語研究所 2階講

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    Forty years of The Selfish Gene are not enough

    Get PDF

    The manifest association structure of the single-factor model: insights from partial correlations

    Get PDF
    The association structure between manifest variables arising from the single-factor model is investigated using partial correlations. The additional insights to the practitioner provided by partial correlations for detecting a single-factor model are discussed. The parameter space for the partial correlations is presented, as are the patterns of signs in a matrix containing the partial correlations that are not compatible with a single-factor model

    Analysis of Bidirectional Associative Memory using SCSNA and Statistical Neurodynamics

    Full text link
    Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical-mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.Comment: 13 pages, 4 figure

    A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity

    Get PDF
    The chemical warfare blistering agent, sulfur mustard (SM), is a powerful mutagen and carcinogen. Due to its similarity to the related chemotherapy agents nitrogen mustard (mechlorethamine), it is expected to act as a developmental neurotoxicant. The present study was designed to establish a chick model for the mechanisms of SM on neurobehavioral teratogenicity, free of confounds related to mammalian maternal effects. Chicken eggs were injected with SM at a dose range of 0.0017-17.0 mug/kg of egg, which is below the threshold for clysmorpholog, on incubation days (ID) 2 and 7, and then tests were conducted posthatching. Exposure to SM elicited significant deficits in the intermedial part of the hyperstriatum ventrale (IMHV)-related imprinting behavior. Parallel decreases were found in the level of membrane PKCgamma in the IMHV, while eliciting no net change in cytosolic PKCgamma. The chick, thus, provides a suitable model for the rapid evaluation of SM behavioral teratogenicity and elucidation of the mechanisms underlying behavioral anomalies. The results obtained, using a model that controls for confounding maternal effects, may be replicated in the mammalian model and provide the groundwork for studies designed to offset or reverse the SM-induced neurobehavioral defects in both avian and mammals. (C) 2004 Elsevier Inc. All tights reserved.</p
    corecore